The Harmonic Oscillator III

Lecture 10
Physics 342
Quantum Mechanics I

Monday, February 15th, 2010

Today, we will finish our discussion of the harmonic oscillator. Our model is a massive particle in an infinite potential well, and we currently have the ground state and a prescription for obtaining higher energy states:

$$
\begin{align*}
\psi_{0}(x) & =\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} e^{-\frac{m \omega}{2 \hbar} x^{2}} \\
\psi_{n}(x) & =\frac{1}{\sqrt{n!}}\left(a_{+}\right)^{n} \psi_{0}(x) \tag{10.1}\\
a_{+} & \equiv \frac{1}{\sqrt{2 m \hbar \omega}}(-i p+m \omega x) .
\end{align*}
$$

The funny factor of $\sqrt{1 / n!}$ comes from our desire to preserve the normalization of the ground state in the excited states. As for the energy, we have learned that the spectrum is linearly increasing with n via:

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega . \tag{10.2}
\end{equation*}
$$

The usual story now holds - we have the "stationary" states, and these solve the time-independent Schrödinger equation. We can put these together with their time-dependent factors to generate linear combinations that solve the full Schrödinger equation:

$$
\begin{equation*}
\Psi(x, t)=\sum_{j=0}^{\infty} A_{j} \psi_{j}(x) e^{-i \frac{E_{j} t}{\hbar}} \tag{10.3}
\end{equation*}
$$

where the coefficients $\left\{A_{j}\right\}_{j=0}^{\infty}$ are set by the initial wavefunction $\Psi(x, 0)$ which must be provided. We rely on completeness (any function can be decomposed into these stationary states) and orthonormality (as we shall see) to actually compute the coefficients.

Homework

Reading: Griffiths, pp. 40-51.

Problem 10.1

We know the stationary states of the infinite square well that is centered at $a / 2$ (so that $V=\infty$ for $x<0$ and $x>a$, and zero in between). Find the stationary states (and energies) of the "symmetric" square well (centered at $x=0$) governed by the potential:

$$
V(x)=\left\{\begin{array}{ll}
\infty & x<-\frac{1}{2} a \text { and } x>\frac{1}{2} a \tag{10.4}\\
0 & -\frac{1}{2} a \leq x \leq \frac{1}{2} a
\end{array} .\right.
$$

Problem 10.2

A particle is in an infinite square well (centered at $x=0$ as in the previous problem). We make an energy measurement, and find:

$$
\begin{equation*}
E=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} . \tag{10.5}
\end{equation*}
$$

After this measurement, we turn off the infinite square well potential and turn on a harmonic confining potential $\left(V(x)=\frac{1}{2} m \omega^{2}\right)$. What is the probability that we then measure the energy to be

$$
\begin{equation*}
E=\frac{1}{2} \hbar \omega ? \tag{10.6}
\end{equation*}
$$

It is not necessary to perform the tricky integration that shows up - just set up the integral.

