Connected Graph Partitions and Minimal Free Resolutions of Toppling Ideals

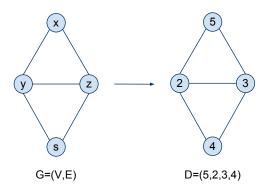
Tianyuan Xu

Reed College

April 9, 2011

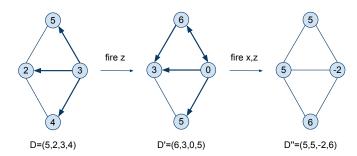
Divisors on a Graph

A **divisor** on a graph G is a formal product $D = \sum_{v \in V_G} d_v v$ where each $d_v \in \mathbb{Z}$. We denote the set of divisors on G by $\mathrm{Div}(G)$.



Vertex and Set Firing

From a divisor we may **fire** a vertex or a set of vertices to obtain a new divisor.

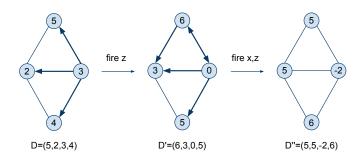


Effective Divisors

A divisor D is **effective with respect to** a set $P \subseteq V_G$ if the divisor obtained by firing P from D is nonnegative.

Effective Divisors

A divisor D is **effective with respect to** a set $P \subseteq V_G$ if the divisor obtained by firing P from D is nonnegative.



Connected Partitions and Their Minimal Effective Divisors

Question

Let V_1, V_2, \dots, V_k be a connected k-partition of G. When is a divisor effective with respect to the sequence of set firings V_1, V_2, \dots, V_k ? Is there a minimum one among these divisors?

Free Resolution of the Toppling Ideal

Connected Partitions and Their Minimal Effective Divisors

Question

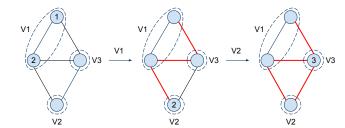
Let V_1, V_2, \dots, V_k be a connected k-partition of G. When is a divisor effective with respect to the sequence of set firings V_1, V_2, \dots, V_k ? Is there a minimum one among these divisors?

Answer:

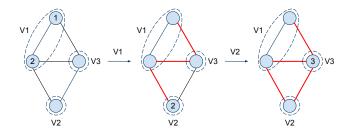
Yes, there is unique minimal divisor effective to V_1, V_2, \cdots, V_k .

Free Resolution of the Toppling Ideal

Minimal Effective Divisors: An Example



Minimal Effective Divisors: An Example

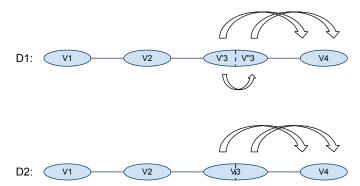


Theorem

Let $v \in V_i$ $(1 \le i \le k)$, then

$$D_{\min}(v) = \sum_{i < j \le k} \operatorname{wt}(v, V_j)$$

Minimal Effective Divisors: An Observation



$$D_1 - D_2 = \sum_{v \in V_3'} \operatorname{wt}(v, V_3'') v$$

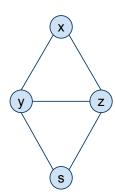
The Laplacian Matrix

Definition

Let G = (V, E) be a graph and v_1, v_2, \dots, v_n be an ordering of V, the **Laplacian matrix** of G, denoted by Δ_G , is defined by

$$\Delta_G = D_G - A_G$$

where D_G , A_G are the degree and adjacency matrices of G, resp.

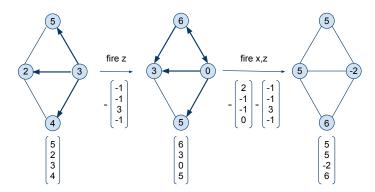


$$\Delta_G = \begin{bmatrix} \mathsf{x} & \mathsf{y} & \mathsf{z} & \mathsf{s} \\ 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix} \begin{smallmatrix} \mathsf{x} \\ \mathsf{y} \\ \mathsf{z} \\ \mathsf{s} \\ \end{bmatrix}$$

The Laplacian Encodes Firing Instructions

Observation

The column vector in Δ_G correponding to a vertex $v \in V_G$ gives the difference in divisors caused by firing v.



Divisors in Monomials

Assumptions

For now on, let G = (V, E) be a graph with $V = \{v_1, v_2, \dots, v_n\}$, and let $R = \mathbb{C}[x_1, x_2, \dots, x_n]$. For a divisor $D \ge 0$ on G, we define

$$x^D = \prod_{v \in V} x_v^{D_v}$$

The Toppling Ideal

Definition

The **toppling ideal** of G, denoted by I_G , is defined by

$$I_G = \operatorname{Span}_{\mathbb{C}}\{x^D - x^E : D, E \in \operatorname{Div}(G)_{\geq 0}, D - E \in \operatorname{Image}(\Delta_G)\}$$

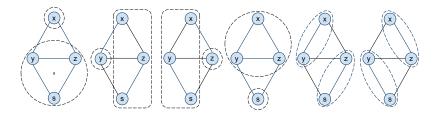
Example:

If
$$\Delta_G = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$
, then $x_1^2 - x_2 x_3, x_2^3 - x_1 x_3 x_4 \in I_G$.

Free Resolution of the Toppling Ideal

Generators of Toppling Ideal

It is known that the generators of toppling ideal can be obtained from connected 2-partitions of the graph...



$$I_G = (x^2 - yz, y^3 - xzs, z^3 - xys, s^2 - yz, xy^2 - z^2s, xz^2 - y^2s)$$

Notation

Let g_1, g_2, \dots, g_m be a set generators of I_G , we define M_1 to be the $1 \times m$ matrix with the g_i 's as its entries so that $I_G = Image(M_1)$.

Relations Among the Generators: Second Syzygies

We now know that the generators of the toppling ideal come from connected 2-partitions of the graph.

Relations Among the Generators: Second Syzygies

We now know that the generators of the toppling ideal come from connected 2-partitions of the graph.

Question

Let g_1, g_2, \dots, g_m be the generators of I_G . What are the relations among these generators? (That is, for what $f_1, f_2, \dots, f_m \in R$ do we have $f_1g_1 + f_2g_2 + \dots + f_mg_m = 0$? Or, what is the kernel of M_1 ?)

Relations Among the Generators: Second Syzygies

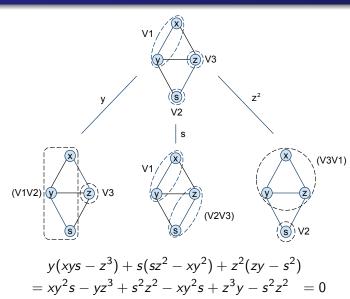
We now know that the generators of the toppling ideal come from connected 2-partitions of the graph.

Question

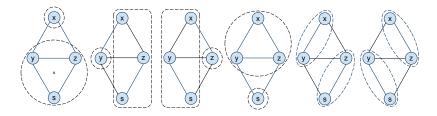
Let g_1, g_2, \dots, g_m be the generators of I_G . What are the relations among these generators? (That is, for what $f_1, f_2, \dots, f_m \in R$ do we have $f_1g_1 + f_2g_2 + \dots + f_mg_m = 0$? Or, what is the kernel of M_1 ?)

The answer comes from the connected 3-partitions of G.

A Relation from a 3-Partition

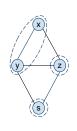


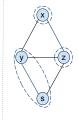
Recall the ordering of the generators of I_G :

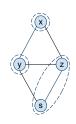


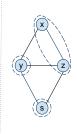
$$I_G = (x^2 - yz, y^3 - xzs, z^3 - xys, s^2 - yz, xy^2 - z^2s, xz^2 - y^2s)$$

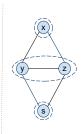
Second Syzygies from 3-Partitions











$$M_2 = \begin{bmatrix} 0 & 0 & -ys & -z^2 & -y^2 & -zs & 0 & 0 & s^2 - yz \\ 0 & 0 & 0 & 0 & -z & -x & -s & -z & 0 \\ -y & -s & -x & -y & 0 & 0 & 0 & 0 & 0 \\ -z^2 & -xy & 0 & 0 & 0 & 0 & -xz & -y^2 & yz - x^2 \\ -s & -z & 0 & 0 & x & y & 0 & 0 & 0 \\ 0 & 0 & z & x & 0 & 0 & -y & -s & 0 \end{bmatrix}$$

• We saw that each column in M_2 gives a relation among the generators of I, hence $\operatorname{Image}(M_2) \subseteq \operatorname{Kernel}(M_1)$.

- We saw that each column in M_2 gives a relation among the generators of I, hence $\operatorname{Image}(M_2) \subseteq \operatorname{Kernel}(M_1)$.
- (Conjecture) Indeed, all relations among the generators is generated by the columns of M_2 . Thus, $\text{Image}(M_2) = \text{Kernel}(M_1)$.

- We saw that each column in M_2 gives a relation among the generators of I, hence $\operatorname{Image}(M_2) \subseteq \operatorname{Kernel}(M_1)$.
- (Conjecture) Indeed, all relations among the generators is generated by the columns of M_2 . Thus, $\operatorname{Image}(M_2) = \operatorname{Kernel}(M_1)$.
- We investigated the relations of a finite set of generators, which themselves have a finite set of generators.

- We saw that each column in M_2 gives a relation among the generators of I, hence $\operatorname{Image}(M_2) \subseteq \operatorname{Kernel}(M_1)$.
- (Conjecture) Indeed, all relations among the generators is generated by the columns of M_2 . Thus, $\operatorname{Image}(M_2) = \operatorname{Kernel}(M_1)$.
- We investigated the relations of a finite set of generators, which themselves have a finite set of generators.
- We may go on to find the relations of this new set of generators, i.e., we may go on to find M_3 with $Image(M_3) = Kernel(M_2)$. This is the idea of a resolution.

Free Resolutions

Definition

Let R be a ring and M be an R-module, a **free resolution** of M is an exact sequence of free R-modules

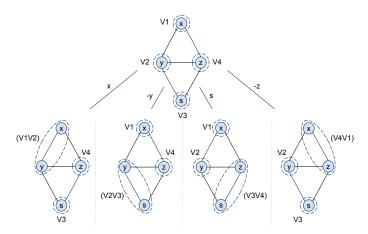
$$\mathcal{F}: F_0 \stackrel{\varphi_1}{\longleftarrow} F_1 \longleftarrow \cdots \stackrel{\varphi_r}{\longleftarrow} F_r \longleftarrow \cdots$$

such that $\operatorname{Coker}(\varphi_1) = M$. The image of φ_i is called the *i*-th **syzygy module** of M.

Note: We are interested in $M := R/I_G = \operatorname{Coker}(\varphi_1)$.

Third Syzygies from 4-Partitions

We showed how an ordered 3-partition gives a second syzygy. The 4-partitions give third syzygies similarly.



Third Syzygies from 4-Partitions

$$M_3 = \begin{bmatrix} 0 & x & -y & 0 \\ x & 0 & 0 & -y \\ -s & -y & 0 & 0 \\ 0 & 0 & y & s \\ z & s & 0 & 0 \\ 0 & 0 & -s & -z \\ 0 & -z & x & 0 \\ -z & 0 & 0 & x \\ -y & 0 & -z & 0 \end{bmatrix}$$

Minimal Free Resolution of the Toppling Ideal

Conjecture

A minimal free resolution of the toppling ideal associated with a graph may be derived from connected partitions of the graph. In particular, a minimal set of generators of the (i-1)-th syzygy of this ideal may be obtained from connected i-partitions of the graph.

Minimal Free Resolution of the Toppling Ideal

Conjecture

A minimal free resolution of the toppling ideal associated with a graph may be derived from connected partitions of the graph. In particular, a minimal set of generators of the (i-1)-th syzygy of this ideal may be obtained from connected i-partitions of the graph.

A minimal free resolution of R/I_G in our example graph is given by

$$\mathcal{F}: R \stackrel{\varphi_1}{\longleftarrow} R^6 \stackrel{\varphi_2}{\longleftarrow} R^9 \stackrel{\varphi_3}{\longleftarrow} R^4 \longleftarrow 0$$

where the matrix representation of φ_i is M_i for each $1 \leq i \leq 3$.

Remarks On the Conjecture

 For families of lattice ideals recognizable as toppling ideals, our conjecture may easily produce their minimal free resolutions.

Remarks On the Conjecture

- For families of lattice ideals recognizable as toppling ideals, our conjecture may easily produce their minimal free resolutions.
- The definition of a free resolution does not assume it is finite.
 When M is finitely generated, Hilbert Syzygy Theorem guarantees so, as is also expected from our conjecture.

Remarks On the Conjecture

- For families of lattice ideals recognizable as toppling ideals, our conjecture may easily produce their minimal free resolutions.
- The definition of a free resolution does not assume it is finite. When M is finitely generated, Hilbert Syzygy Theorem guarantees so, as is also expected from our conjecture.
- We didn't discuss the "connected" and "minimal" in the title. In fact, this minimality comes from this connectedness.