Combination Locks and Permutations

An Exploration Through Analysis

Tim Sasaki

April 9, 2011

• Suppose we have a combination lock with buttons numbered 1 through *n*.

2/35

- Suppose we have a combination lock with buttons numbered 1 through *n*.
- Combinations are entered by pressing buttons in sequence, with each button being pushed only once.

- Suppose we have a combination lock with buttons numbered 1 through n.
- Combinations are entered by pressing buttons in sequence, with each button being pushed only once.
- How many combinations are possible?

- Suppose we have a combination lock with buttons numbered 1 through n.
- Combinations are entered by pressing buttons in sequence, with each button being pushed only once.
- How many combinations are possible?
 - If we push buttons one at a time, then the number of combinations is simply n! since we are not repeating buttons.

- Suppose we have a combination lock with buttons numbered 1 through n.
- Combinations are entered by pressing buttons in sequence, with each button being pushed only once.
- How many combinations are possible?
 - If we push buttons one at a time, then the number of combinations is simply n! since we are not repeating buttons.
 - However, what if we are allowed to push multiple buttons at once?

An example for n = 4

Possible combinations are:

- {1,2},{3},{4}
- {2,3,4},{1}
- {1,3},{2,4}
- {1}, {2}, {3}, {4}

In particular, the set of multiple-button-push combinations contains the set of single-button-push combinations, so we know there are at least n! combinations (the only instance when the number of combinations is actually equal to n! is for $n \in \{0,1\}$).

Exhaustive checking works fine for small n.

Combinations for n = 3

```
 \begin{array}{l} (\{1\},\{2\},\{3\}),\,(\{1\},\{3\},\{2\}),\,(\{2\},\{1\},\{3\}),\,(\{2\},\{3\},\{1\}),\,(\{3\},\{1\},\{2\}),\\ (\{3\},\{2\},\{1\}),\,(\{1,2\},\{3\}),\,(\{1,3\},\{2\}),\,(\{2,3\},\{1\}),\,(\{1\},\{2,3\}),\,(\{2\},\{1,3\}),\\ (\{3\},\{1,2\}),\,(\{1,2,3\}) \end{array}
```

There are 13 possible combinations for n = 3.

However, the number of combinations as n increases becomes very large.

• We know that there are at least n! combinations, and the factorials blow up quickly.

For n = 6, this gives us at least 6! = 720 combinations.

Then, we are motivated to try and derive a formula to compute the number of combinations for a lock with n buttons, since writing out each of 720 combinations is not desirable.

Let a_n be the number of combinations for an n-button lock. Then, note that a_0 , the number of combinations for a 0-button lock, is equal to 1 (the only combination is no buttons pressed).

Further, for any n > 0, a valid combination comprises an initial push of k buttons, for $1 \le k \le n$, followed by a combination formed with the remaining n - k buttons.

This leads us to a recurrence relation:

$$a_n = \sum_{k=1}^n \binom{n}{k} a_{n-k} = \binom{n}{1} a_{n-1} + \binom{n}{2} a_{n-2} + \dots + \binom{n}{n-1} a_1 + \binom{n}{n} a_0,$$

where $\binom{n}{k}$ represents the number of ways to pick the initial k buttons and a_{n-k} represents the number of ways to choose all of the remaining n-k buttons.

Let's try out our formula using n = 3. Using our recurrence relation,

$$a_{3} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} a_{2} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} a_{1} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} a_{0}$$

$$= \begin{pmatrix} 3 \\ 1 \end{pmatrix} (3) + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (1) + \begin{pmatrix} 3 \\ 3 \end{pmatrix} (1)$$

$$= (3 \cdot 3) + (3 \cdot 1) + (1 \cdot 1)$$

$$= 13$$

This matches the value we had earlier. Naturally, we would like to try and find a closed-form equation instead of a recursive one.

Let's try out our formula using n = 3. Using our recurrence relation,

$$a_3 = {3 \choose 1} a_2 + {3 \choose 2} a_1 + {3 \choose 3} a_0$$

$$= {3 \choose 1} (3) + {3 \choose 2} (1) + {3 \choose 3} (1)$$

$$= (3 \cdot 3) + (3 \cdot 1) + (1 \cdot 1)$$

$$= 13$$

This matches the value we had earlier. Naturally, we would like to try and find a closed-form equation instead of a recursive one.

This is a task we will accomplish through the use of some infinite series and integrals.

Let's try out our formula using n = 3. Using our recurrence relation,

$$a_{3} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} a_{2} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} a_{1} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} a_{0}$$

$$= \begin{pmatrix} 3 \\ 1 \end{pmatrix} (3) + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (1) + \begin{pmatrix} 3 \\ 3 \end{pmatrix} (1)$$

$$= (3 \cdot 3) + (3 \cdot 1) + (1 \cdot 1)$$

$$= 13$$

This matches the value we had earlier. Naturally, we would like to try and find a closed-form equation instead of a recursive one.

This is a task we will accomplish through the use of some infinite series and integrals.

For the duration of the talk, we will adopt the convention that $0^0 = 1$ strictly for notational convenience.

A new recursive formula

We now take our relation

$$a_n = \sum_{k=1}^n \binom{n}{k} a_{n-k} = \binom{n}{1} a_{n-1} + \binom{n}{2} a_{n-2} + \dots + \binom{n}{n-1} a_1 + \binom{n}{n} a_0,$$

and put in the values of the binomial coefficients:

$$a_{n} = \frac{n!}{(n-1)!1!} a_{n-1} + \frac{n!}{(n-2)!2!} a_{n-2} + \dots + \frac{n!}{1!(n-1)!} a_{1} + \frac{n!}{0!n!} a_{0}$$

$$= n! \left(\frac{a_{n-1}}{(n-1)!1!} + \frac{a_{n-2}}{(n-2)!2!} + \dots + \frac{a_{1}}{1!(n-1)!} + \frac{a_{0}}{0!n!} \right).$$

A new recursive formula

We now take our relation

$$a_n = \sum_{k=1}^n \binom{n}{k} a_{n-k} = \binom{n}{1} a_{n-1} + \binom{n}{2} a_{n-2} + \dots + \binom{n}{n-1} a_1 + \binom{n}{n} a_0,$$

and put in the values of the binomial coefficients:

$$a_{n} = \frac{n!}{(n-1)!1!} a_{n-1} + \frac{n!}{(n-2)!2!} a_{n-2} + \dots + \frac{n!}{1!(n-1)!} a_{1} + \frac{n!}{0!n!} a_{0}$$

$$= n! \left(\frac{a_{n-1}}{(n-1)!1!} + \frac{a_{n-2}}{(n-2)!2!} + \dots + \frac{a_{1}}{1!(n-1)!} + \frac{a_{0}}{0!n!} \right).$$

We notice a relationship in the terms of the sum between each a_k and the first factorial in the denominator. We thus define a new term $b_n = a_n / n!$ and rewrite the relation:

$$a_n = n! \left(\frac{b_{n-1}}{1!} + \frac{b_{n-2}}{2!} + \dots + \frac{b_0}{n!} \right)$$

A new recursive formula

$$a_n = n! \left(\frac{b_{n-1}}{1!} + \frac{b_{n-2}}{2!} + \dots + \frac{b_0}{n!} \right)$$

Finally, since $b_n = a_n / n!$, we divide by n! to get

$$b_n = \frac{a_n}{n!} = \left(\frac{b_{n-1}}{1!} + \frac{b_{n-2}}{2!} + \dots + \frac{b_0}{n!}\right) = \sum_{k=1}^n \frac{b_{n-k}}{k!}.$$

This relation is a bit simpler than our original one, so it may be easier to find a closed equation for b_n first and then get one for a_n .

The calculus begins

Theorem 1

For all n > 0,

$$\frac{1}{2(\ln 2)^n} \le b_n \le \frac{1}{(\ln 2)^n}$$

We consider the generating function

$$f(x) = \sum_{n=0}^{\infty} b_n x^n.$$

It can be shown using Theorem 1 that the series is absolutely convergent for $|x| < \ln 2$.

Then, for $|x| < \ln 2$,

$$f(x) = b_0 + \sum_{n=1}^{\infty} b_n x^n$$

$$= 1 + \left(\frac{b_0}{1!} x^1\right) + \left(\frac{b_1}{1!} x^2 + \frac{b_0}{2!} x^2\right) + \left(\frac{b_2}{1!} x^3 + \frac{b_1}{2!} x^3 + \frac{b_0}{3!} x^3\right) + \cdots$$

$$= 1 + \left(\frac{b_0}{1!} x^1 + \frac{b_1}{1!} x^2 + \frac{b_2}{1!} x^3 + \cdots\right) + \left(\frac{b_0}{2!} x^2 + \frac{b_1}{2!} x^3 + \cdots\right) + \cdots$$

$$= 1 + \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \frac{b_{n-k}}{k!} x^n$$

$$= 1 + \sum_{k=1}^{\infty} \frac{x^k}{k!} \sum_{n=0}^{\infty} b_n x^n$$

$$= 1 + (e^x - 1) f(x)$$

From this, we get that $f(x) = \frac{1}{2-e^x}$ for $|x| < \ln 2$.

If $\sum_{n=0}^{\infty} b_n x^n$ is the power series representation of f at 0, then we know that the coefficients, b_n , have the form

$$b_n = \frac{f^{(n)}(0)}{n!}.$$

Recall that $b_n = a_n / n!$, which implies that

$$a_n = f^{(n)}(0),$$

or

$$a_n = \left. \frac{d^n}{dx^n} \left(\frac{1}{2 - e^x} \right) \right|_{x = 0}.$$

However, this formula is still problematic, since we must calculate each intermediary derivative to get to the n^{th} one if we wish to use it.

To get past this problem, we can view f(x) as a geometric series:

To get past this problem, we can view f(x) as a geometric series:

$$\frac{1}{2 - e^x} = \frac{\frac{1}{2}(1)}{\frac{1}{2}(2 - e^x)} = \frac{1/2}{1 - e^x/2} = \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{e^x}{2}\right)^k,$$

as long as the series converges, which is for $|e^x/2| < 1$.

To get past this problem, we can view f(x) as a geometric series:

$$\frac{1}{2 - e^x} = \frac{\frac{1}{2}(1)}{\frac{1}{2}(2 - e^x)} = \frac{1/2}{1 - e^x/2} = \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{e^x}{2}\right)^k,$$

as long as the series converges, which is for $|e^x/2| < 1$.

Since $e^x/2$ is always positive, this becomes

$$\frac{e^x}{2} < 1 \implies e^x < 2 \implies x < \ln 2.$$

To get past this problem, we can view f(x) as a geometric series:

$$\frac{1}{2 - e^x} = \frac{\frac{1}{2}(1)}{\frac{1}{2}(2 - e^x)} = \frac{1/2}{1 - e^x/2} = \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{e^x}{2}\right)^k,$$

as long as the series converges, which is for $|e^x/2| < 1$.

Since $e^x/2$ is always positive, this becomes

$$\frac{e^x}{2} < 1 \implies e^x < 2 \implies x < \ln 2.$$

Then, because $0 < \ln 2$,

$$a_n = \frac{d^n}{dx^n} \left[\frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{e^x}{2} \right)^k \right] \bigg|_{x=0} = \frac{1}{2} \sum_{k=0}^{\infty} k^n \left(\frac{e^0}{2} \right)^k = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{2^k}.$$

And now, integrals

We can approximate the sum

$$\sum_{k=0}^{\infty} \frac{k^n}{2^k} \approx \int_0^{\infty} \frac{x^n}{2^x} \, dx,$$

And now, integrals

We can approximate the sum

$$\sum_{k=0}^{\infty} \frac{k^n}{2^k} \approx \int_0^{\infty} \frac{x^n}{2^x} \, dx,$$

but first we want to make the substitutions $u = x \ln 2 \implies x = u / \ln 2$ and $dx = 1 / \ln 2 du$:

And now, integrals

We can approximate the sum

$$\sum_{k=0}^{\infty} \frac{k^n}{2^k} \approx \int_0^{\infty} \frac{x^n}{2^x} \, dx,$$

but first we want to make the substitutions $u = x \ln 2 \implies x = u / \ln 2$ and $dx = 1 / \ln 2 du$:

$$\int_0^\infty \frac{x^n}{2^x} dx = \int_0^\infty \frac{(u/(\ln 2))^n}{2^{u/(\ln 2)}} \cdot \frac{1}{\ln 2} du = \frac{1}{(\ln 2)^{n+1}} \int_0^\infty \frac{u^n}{\left(2^{(1/\ln 2)}\right)^u} du$$
$$= \frac{1}{(\ln 2)^{n+1}} \int_0^\infty \frac{u^n}{e^u} du.$$

Integrals, continued

We focus now on the new integral and use integration by parts *n* times (choosing the constituent parts wisely):

$$\int_0^\infty \frac{u^n}{e^u} du = \lim_{b \to \infty} \sum_{k=0}^n -\frac{n!}{(n-k)!} \frac{u^{n-k}}{e^u} \bigg|_0^b = \sum_{k=0}^n \frac{n!}{(n-k)!} \frac{0^{n-k}}{e^0}.$$

Integrals, continued

We focus now on the new integral and use integration by parts n times (choosing the constituent parts wisely):

$$\int_0^\infty \frac{u^n}{e^u} du = \lim_{b \to \infty} \sum_{k=0}^n -\frac{n!}{(n-k)!} \frac{u^{n-k}}{e^u} \bigg|_0^b = \sum_{k=0}^n \frac{n!}{(n-k)!} \frac{0^{n-k}}{e^0}.$$

We note that every term in the sum is equal to 0 except the last, which is

$$\frac{n!}{(n-n)!}\frac{0^0}{e^0} = \frac{n!}{0!}\frac{1}{1} = n!.$$

Integrals, continued

We focus now on the new integral and use integration by parts *n* times (choosing the constituent parts wisely):

$$\int_0^\infty \frac{u^n}{e^u} du = \lim_{b \to \infty} \sum_{k=0}^n -\frac{n!}{(n-k)!} \frac{u^{n-k}}{e^u} \bigg|_0^b = \sum_{k=0}^n \frac{n!}{(n-k)!} \frac{0^{n-k}}{e^0}.$$

We note that every term in the sum is equal to 0 except the last, which is

$$\frac{n!}{(n-n)!}\frac{0^0}{e^0} = \frac{n!}{0!}\frac{1}{1} = n!.$$

Referring back to our estimation of a_n , this gives us

$$a_n = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{2^k} \approx \frac{1}{2} \int_0^{\infty} \frac{x^n}{2^x} \, dx = \frac{1}{2(\ln 2)^{n+1}} \int_0^{\infty} \frac{u^n}{e^u} \, du = \frac{n!}{2(\ln 2)^{n+1}}.$$

A brief recap

We've derived the following formulas for a_n so far:

$$a_n = \sum_{k=1}^n \binom{n}{k} a_{n-k} = \binom{n}{1} a_{n-1} + \binom{n}{2} a_{n-2} + \dots + \binom{n}{n-1} a_1 + \binom{n}{n} a_0$$

$$a_n = \left. \frac{d^n}{dx^n} \left(\frac{1}{2 - e^x} \right) \right|_{x = 0}$$

$$a_n = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{2^k}$$

$$a_n \approx \frac{n!}{2(\ln 2)^{n+1}}$$

We now wish to determine just how accurate our last approximation is.

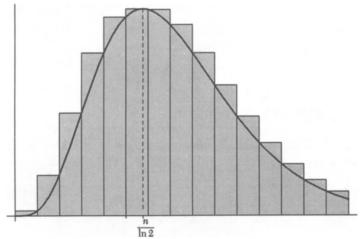
Some more calculus

We begin by defining a function g such that for $n \in \mathbb{N}$, for all $x \in [0, \infty)$, $g(x) := x^n/e^x$. The First Derivative Test will show us that g is increasing on $[0, n/\ln 2]$ and decreasing on $[n/\ln 2, \infty)$. Hence, g has a local maximum at $x = n/\ln 2$.

We are going to use rectangles to approximate the integral $\int_0^\infty \frac{x^n}{e^x} dx$. Instead of using the height at left-or-right endpoints, however, we will be using the suprema (least upper bound) and infima (greatest lower bound) of g in each subinterval. These are called $Darboux\ sums$.

A pictoral interlude

Break the interval $[0,\infty)$ into subintervals $[0,1],[1,2],\cdots$, and define $j=\lfloor n/\ln 2\rfloor$.



Back to work

Recall that *g* has a max at $x = n/\ln 2$. The value of *g* at this point is

$$\frac{(n/\ln 2)^n}{2^{n/\ln 2}} = \frac{n^n}{\left(2^{1/\ln 2}\right)^n (\ln 2)^n} = \left(\frac{n}{e \ln 2}\right)^n.$$

Then, the sum of the areas of the rectangles from the previous slide is

Back to work

Recall that *g* has a max at $x = n/\ln 2$. The value of *g* at this point is

$$\frac{(n/\ln 2)^n}{2^{n/\ln 2}} = \frac{n^n}{\left(2^{1/\ln 2}\right)^n (\ln 2)^n} = \left(\frac{n}{e \ln 2}\right)^n.$$

Then, the sum of the areas of the rectangles from the previous slide is

$$\sum_{k=1}^{j} \frac{k^n}{2^k} + \left(\frac{n}{e \ln 2}\right)^n + \sum_{k=j+1}^{\infty} \frac{(k)^n}{2^k}$$

Back to work

Recall that *g* has a max at $x = n/\ln 2$. The value of *g* at this point is

$$\frac{(n/\ln 2)^n}{2^{n/\ln 2}} = \frac{n^n}{\left(2^{1/\ln 2}\right)^n (\ln 2)^n} = \left(\frac{n}{e \ln 2}\right)^n.$$

Then, the sum of the areas of the rectangles from the previous slide is

$$\sum_{k=1}^{J} \frac{k^n}{2^k} + \left(\frac{n}{e \ln 2}\right)^n + \sum_{k=j+1}^{\infty} \frac{(k)^n}{2^k}$$
$$= \sum_{k=0}^{\infty} \frac{k^n}{2^k} + \left(\frac{n}{e \ln 2}\right)^n = 2a_n + \left(\frac{n}{e \ln 2}\right)^n.$$

An answer at last

The approximation is clearly greater than the value of the integral, so this gives us

$$\int_0^\infty \frac{x^n}{2^x} \, dx < 2a_n + \left(\frac{n}{e \ln 2}\right)^n \implies -\frac{1}{2} \left(\frac{n}{e \ln 2}\right)^n < a_n - \frac{n!}{2(\ln 2)^{n+1}}.$$

A similar process for an underestimation of the integral yields

$$a_n - \frac{n!}{2(\ln 2)^{n+1}} < \frac{1}{2} \left(\frac{n}{e \ln 2}\right)^n.$$

Hence, we have

$$\left|a_n - \frac{n!}{2(\ln 2)^{n+1}}\right| < \frac{1}{2} \left(\frac{n}{e \ln 2}\right)^n,$$

which means our approximation is within $\frac{1}{2} \left(\frac{n}{e \ln 2} \right)^n$ of a_n .

An unexpected result

The error bound we found is a function that increases with n. Despite this, we can show that

$$\lim_{n \to \infty} \frac{a_n}{n! / [2(\ln 2)^{n+1}]} = 1.$$

The proof uses our derived error bounds, Stirling's Formula, and the Squeeze Theorem to show that

$$\lim_{n\to\infty}\left|\frac{a_n}{n!/[2(\ln 2)^{n+1}]}-1\right|=0.$$

An unexpected result

This may initially seem counter-intuitive, since the error is increasing, but consider as a simple example $n^3 + n^2$ and n^3 . The error between them is n^2 , which increases quadratically with n, but

$$\lim_{n\to\infty} \frac{n^3 + n^2}{n^3} = 1.$$

Finally, some combinatorics

Instead of approximating a_n via the methods we have gone through, we can also simply just evaluate the infinite sum. For $n \ge 0$, define

$$h_n(x) = \sum_{k=0}^{\infty} k^n x^k.$$

Recalling our formula

$$a_n = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{2^k},$$

it is clear that

$$a_n = \frac{1}{2}h_n\left(\frac{1}{2}\right).$$

So, by finding formulas for each h_n , we can find a formula for a_n .

But first, some preliminary calculus (Ha!)

Looking at $h_0(x)$, we have

$$h_0(x) = \sum_{k=0}^{\infty} k^0 x^k = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$
 $-1 < x < 1$.

We now look at the differentiation of the series:

$$h'_n(x) = \sum_{k=0}^{\infty} k^n k \cdot x^{k-1} = \sum_{k=0}^{\infty} k^{n+1} x^{k-1},$$

from which we can get

$$xh'_n(x) = \sum_{k=0}^{\infty} k^{n+1}x^k = h_{n+1}(x).$$

Yet another recurrence

Given our newly found recurrence, $xh'_n(x) = h_{n+1}(x)$, we look at its particular values for $n \le 5$:

$$h_0(x) = \frac{1}{1-x}$$

$$h_1(x) = \frac{x}{(1-x)^2}$$

$$h_2(x) = \frac{x+x^2}{(1-x)^3}$$

$$h_3(x) = \frac{x+4x^2+x^3}{(1-x)^4}$$

$$h_4(x) = \frac{x+11x^2+11x^3+x^4}{(1-x)^5}$$

$$h_5(x) = \frac{x+26x^2+66x^3+26x^4+x^5}{(1-x)^6}$$

We notice some patterns in each h_n :

We notice some patterns in each h_n :

 $oldsymbol{0}$ The numerator contains a polynomial of degree n.

We notice some patterns in each h_n :

- The numerator contains a polynomial of degree n.
- The coefficients of the polynomial appear to be symmetric.

We notice some patterns in each h_n :

- The numerator contains a polynomial of degree n.
- The coefficients of the polynomial appear to be symmetric.
- **3** The denominator is always $(1-x)^{n+1}$.

We notice some patterns in each h_n :

- lacktriangle The numerator contains a polynomial of degree n.
- The coefficients of the polynomial appear to be symmetric.
- **3** The denominator is always $(1-x)^{n+1}$.

We define now $A_{n,k}$ to be the coefficient of x^k in h_n . For example, given

$$h_4(x) = \frac{x + 11x^2 + 11x^3 + x^4}{(1 - x)^5},$$

 $A_{4.3} = 11.$

This is the last recurrence relation

Theorem 2

For all $n \ge 1$,

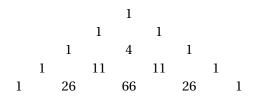
$$h_n(x) = \frac{\sum_{k=1}^n A_{n,k} x^k}{(1-x)^{n+1}}$$

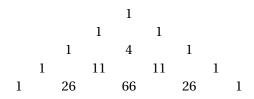
where $A_{n,k}$ is defined by the following recurrence:

$$A_{n,1} = A_{n,n} = 1$$
, $A_{n+1} = kA_{n,k} + (n+2-k)A_{n,k-1}$, for $2 \le k \le n$

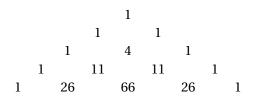
The proof of Theorem 2 follows by induction.

Since we have a formula for $A_{n,k}$ now, we will compute them for the first few values of n.

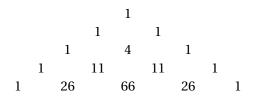




$$1 = 1$$

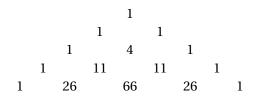


$$1 = 1$$
$$1 + 1 = 2$$



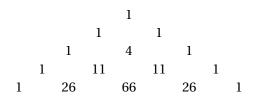
$$1 = 1$$

 $1 + 1 = 2$
 $1 + 4 + 1 = 6$



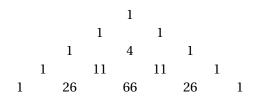
$$1 = 1$$

 $1 + 1 = 2$
 $1 + 4 + 1 = 6$
 $1 + 11 + 11 + 1 = 24$



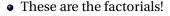
$$1 = 1$$

 $1+1=2$
 $1+4+1=6$
 $1+11+11+1=24$
 $1+26+66+26+1=120$



$$1 = 1$$

 $1 + 1 = 2$
 $1 + 4 + 1 = 6$
 $1 + 11 + 11 + 1 = 24$
 $1 + 26 + 66 + 26 + 1 = 120$



Eulerean numbers

The $A_{n,k}$'s we defined earlier are, in fact, already well known in combinatorics as the Eulerean numbers, and they denote the number of n-permutations with k increasing runs. As a reminder, an n-permutation is a permutation of $1, 2, \cdots, n$. A definition of an increasing run is as follows:

Increasing run

For an *n*-permutation $(s_1 s_2 \cdots s_n)$, a sequence of terms $s_i s_{i+1} \cdots s_k$ where $i \le k$, $s_j < s_{j+1}$ for $i \le j < k$, and either k = n or $s_k > s_{k+1}$.

Example: The permutation (1 4 3 5 2) has the increasing runs (1 4), (3 5), and (2).

No calculus appears on this slide

The patterns we noticed earlier are in fact properties of the Eulerean numbers:

Theorem 3

For all $n \ge 1$,

- (a) $\sum_{k=1}^{n} A_{n,k} = n!$,
- (b) $A_{n,k} = A_{n,n+1-k}$ for $1 \le k \le n$.

Part (a) is obvious from the definition of $A_{n,k}$. A proof of part (b) appears in [*Advanced Combinatorics* by L. Comtet, p. 242].

Recalling that $a_n = (1/2)h_n(1/2)$, we can now say

$$a_n = \left(\frac{1}{2}\right) \frac{\sum_{k=1}^n A_{n,k} (1/2)^k}{(1 - (1/2))^{n+1}} = \sum_{k=1}^n A_{n,k} 2^{n-k}.$$

The equation $a_n = \sum_{k=1}^n A_{n,k} 2^{n-k}$ has a natural interpretation for the lock combinations. If we take an n-permutation with k increasing runs, we can delimit the runs as seen for (4 1 3 2 5 6):

(4|13|256).

The equation $a_n = \sum_{k=1}^n A_{n,k} 2^{n-k}$ has a natural interpretation for the lock combinations. If we take an n-permutation with k increasing runs, we can delimit the runs as seen for (4 1 3 2 5 6):

The most obvious combination we can get from this is ({4}, {1,3}, {2,5,6}), but we can also create other combinations by limiting any of the remaining spots.

The equation $a_n = \sum_{k=1}^n A_{n,k} 2^{n-k}$ has a natural interpretation for the lock combinations. If we take an n-permutation with k increasing runs, we can delimit the runs as seen for (4 1 3 2 5 6):

(4|13|256).

The most obvious combination we can get from this is ({4}, {1,3}, {2,5,6}), but we can also create other combinations by limiting any of the remaining spots.

This gives us 2^{n-k} combinations for each n-permutation with k increasing runs, of which there are $A_{n,k}$.

The equation $a_n = \sum_{k=1}^n A_{n,k} 2^{n-k}$ has a natural interpretation for the lock combinations. If we take an n-permutation with k increasing runs, we can delimit the runs as seen for (4 1 3 2 5 6):

The most obvious combination we can get from this is $(\{4\}, \{1,3\}, \{2,5,6\})$, but we can also create other combinations by limiting any of the remaining spots.

This gives us 2^{n-k} combinations for each n-permutation with k increasing runs, of which there are $A_{n,k}$.

A formula does exist for $A_{n,k}$ (see Comtet, pp. 243), we can combine it with the above formula to get

$$a_n = \sum_{k=1}^n \sum_{i=0}^{k-1} (-1)^i \binom{n+1}{i} (k-i)^n 2^{n-k}.$$

The Stirling numbers of the second kind

Stirling number of the second kind

For $n \in \mathbb{N}$ and $1 \le k \le n$, the Stirling number of the second kind, denoted S(n,k) is equal to the number of ways to partition the set $\{1,2,\cdots,n\}$ into k unordered non-empty subsets.

A combination lock is of course an *ordered* partition, and if we have *k* subsets, there are *k*! ways to order them. Hence,

$$a_n = \sum_{k=1}^n k! S(n, k).$$

A formula for S(n, k) exists as well (Comtet, pp. 204-205):

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k-1} (-1)^n \binom{k}{i} (k-i)^n.$$

Thus, we get our last formula for a_n :

$$a_n = \sum_{k=1}^n \sum_{i=0}^{k-1} (-1)^n \binom{k}{i} (k-i)^n.$$

Wrapping up

Here are all of our formulas for a_n :

$$a_n = \sum_{k=1}^n \binom{n}{k} a_{n-k} = \binom{n}{1} a_{n-1} + \binom{n}{2} a_{n-2} + \dots + \binom{n}{n-1} a_1 + \binom{n}{n} a_0$$

$$a_n = \frac{d^n}{dx^n} \left(\frac{1}{2 - e^x} \right) \Big|_{x = 0}$$

3
$$a_n = \frac{1}{2} \sum_{k=0}^{\infty} \frac{k^n}{2^k}$$

$$a_n \approx \frac{n!}{2(\ln 2)^{n+1}}$$

$$a_n = \sum_{k=1}^n \sum_{i=0}^{k-1} (-1)^i \binom{n+1}{i} (k-i)^n 2^{n-k}$$

$$a_n = \sum_{k=1}^n \sum_{i=0}^{k-1} (-1)^n \binom{k}{i} (k-i)^n$$

References

1. L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht-Holland, 1974

2. D. Velleman and G. Call, *Permutations and combination locks*, *Mathematics Magazine* **68** (1995) 243-252.