A Sequential Operator Splitting Method for Maxwell’s Equations in Debye Dispersive Media

A.C. Leung & V.A. Bokil

Department of Mathematics

Joint Mathematics Meetings 2011

January 7, 2011
Goals

- Develop a scheme that will allow improved computation times for Maxwell’s Equations
- Application in mind: biomedical imaging
- The Debye media characterisation is suitable for human tissue
Maxwell’s Equations

- Coupled system of partial differential equations relating electric and magnetic forces

Maxwell’s Equations

\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad (1) \]
\[\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \quad (2) \]
\[\nabla \cdot \mathbf{B} = 0 \quad (3) \]
\[\nabla \cdot \mathbf{D} = \rho, \quad (4) \]

- Terms of interest are \(\mathbf{E} \) and \(\mathbf{H} \), the electric and magnetic field variables
Maxwell’s Equations

- The field variables can be related to one another by the constitutive relations

Constitutive Relations

\[D = \varepsilon E + P, \]
\[B = \mu H, \]
\[J = \sigma E, \]

\(\varepsilon \)	electric permittivity
\(\mu \)	magnetic permittivity
\(\sigma \)	electric displacement

- These coefficients are determined by the material through which the wave propagates
Debye Media

- We focus our attention on developing a scheme appropriate for Debye media
Debye Media

- We focus our attention on developing a scheme appropriate for Debye media

Debye Media Characterization

\[\hat{\varepsilon}(\omega) = \varepsilon_\infty + \frac{\varepsilon_s - \varepsilon_\infty}{1 + i\omega\tau}, \]
\[\tau \frac{\partial P}{\partial t} + P = \varepsilon_0 (\varepsilon_s - \varepsilon_\infty) E \]

<table>
<thead>
<tr>
<th>(\varepsilon_s)</th>
<th>static permittivity</th>
<th>(\omega)</th>
<th>field frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_\infty)</td>
<td>infinite frequency permittivity</td>
<td>(\tau)</td>
<td>relaxation time</td>
</tr>
</tbody>
</table>

- This provides us with a complex permittivity that indicates how the material affects the propagation of an electromagnetic wave
Reduction to One Dimension

- We let all wave movement be solely in the z-direction
- By combining the constitutive relations with Maxwell’s curl equations (1) and (2), we get
- In the Debye medium with macroscopic polarization P we can therefore write the system as

One Dimensional System

\[
\begin{align*}
\frac{\partial E}{\partial t} &= \frac{1}{\varepsilon_\infty \varepsilon_0} \left(\frac{\partial H}{\partial z} - \frac{\partial P}{\partial t} \right) \\
\frac{\partial H}{\partial t} &= \frac{1}{\mu_0} \frac{\partial E}{\partial z} \\
\frac{\partial P}{\partial t} &= \left(\frac{\varepsilon_0 (\varepsilon_s - \varepsilon_\infty)}{\tau} \right) E - \frac{1}{\tau} P
\end{align*}
\]
Yee Scheme

- Popular explicit method for solving Maxwell’s Equations
- Staggers computational grid for field variables in space and time
- Conditionally stable if \(\frac{\Delta t}{\Delta z} \leq 1 \) satisfied
- Second order accuracy in 1-D
Yee Scheme

- Popular explicit method for solving Maxwell’s Equations
- Staggers computational grid for field variables in space and time
- Conditionally stable if \(c \frac{\Delta t}{\Delta z} \leq 1 \) satisfied
- Second order accuracy in 1-D

We show the Yee Scheme in free space for illustration

Note that in free space there is no polarization term, so \(P = 0 \) and \(\varepsilon_{\infty} = 1 \), thus \(\frac{\partial P}{\partial t} = 0 \) as well.
Yee Scheme

Yee Scheme in One Dimensional Free Space

\[
\begin{align*}
E_{k}^{n+1} &= E_{k}^{n} + \frac{1}{\varepsilon_{0} \Delta z} \frac{\Delta t}{\Delta z} (H_{k+1/2}^{n+1/2} - H_{k-1/2}^{n+1/2}) \\
H_{k+1/2}^{n+1} &= H_{k+1/2}^{n-1/2} + \frac{1}{\mu_{0} \Delta z} \frac{\Delta t}{\Delta z} (E_{k+1}^{n} - E_{k}^{n})
\end{align*}
\]

Open circle: \(H \). Closed circle: \(E \).
Motivations

Why operator splitting?
Motivations

Why operator splitting?

- We want a numerical method that is unconditionally stable so that time and spatial steps may be chosen independently.
- Higher dimensional problems can be broken down into multiple 1-D problems with operator splitting methods.
- Implicit methods would allow a large one-off computation of a matrix inverse instead of many frequent computations.
We will use the following notation to simplify frequently occurring terms, where V_j^n is a field variable at time step t_n and spatial node z_j.

\[
\bar{V}_j^n = \frac{1}{2} (V_{j+1/2}^{n+1} + V_{j-1/2}^{n-1/2})
\]

\[
\delta_z V_{j+1/2}^n = \frac{1}{\Delta z} (V_{j+1}^n - V_j^n)
\]

\[
\delta_t V_{j+1/2}^{n+1} = \frac{1}{\Delta t} (V_{j+1}^{n+1} - V_j^n)
\]
We scale the equations (7), (8), and (9) with:

- $\tilde{E} = \sqrt{\frac{\varepsilon_0 \varepsilon_\infty}{\mu_0}} E$
- $c_\infty = \frac{c}{\sqrt{\varepsilon_\infty}}$
- $\varepsilon_q = \frac{\varepsilon_s}{\varepsilon_\infty}$

Then the system becomes

\[
\begin{align*}
\frac{\partial \tilde{E}}{\partial t} &= \frac{c_\infty}{\tau} \frac{\partial H}{\partial z} - \frac{\varepsilon_q - 1}{\tau} \tilde{E} + \frac{c_\infty}{\tau} P \\
\frac{\partial H}{\partial t} &= \frac{c_\infty}{\tau} \frac{\partial \tilde{E}}{\partial z} \\
\frac{\partial P}{\partial t} &= \frac{\varepsilon_q - 1}{c_\infty \tau} \tilde{E} - \frac{1}{\tau} P.
\end{align*}
\]

We will now drop the tilde.
Original Formulation

- Using $U = (E, H, P)^T$, we can write the system in matrix form with a source term

$$
\frac{\partial U}{\partial t} = \begin{pmatrix}
-\frac{(\varepsilon_q - 1)}{\tau} & c_\infty \frac{\partial}{\partial z} & c_\infty \\
0 & 0 & 0 \\
(\varepsilon_q - 1) & 0 & -\frac{1}{\tau}
\end{pmatrix} U + \begin{pmatrix}
-c_\infty J_s \\
0 \\
0
\end{pmatrix}.
$$

- It is convenient to write this system as a sum of operations, thus

$$
\frac{\partial U}{\partial t} = \begin{pmatrix}
-\frac{\varepsilon_q - 1}{\tau} & 0 & c_\infty \\
0 & 0 & 0 \\
\varepsilon_q - 1 & 0 & -\frac{1}{\tau}
\end{pmatrix} + \begin{pmatrix}
0 & c_\infty \frac{\partial}{\partial z} & 0 \\
c_\infty \frac{\partial}{\partial z} & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} U + \begin{pmatrix}
-c_\infty J_s \\
0 \\
0
\end{pmatrix}.
$$

- Thus with A, B, J matrices, we can write the split system as

$$
\frac{\partial U}{\partial t} = \frac{1}{\tau} AU + BU + J. \quad (10)
$$
Split Scheme

- We solve each iteration in two steps
- Initial condition $U(t_n)$
Split Scheme

- We solve each iteration in two steps
- Initial condition \(U(t_n) \)

1. Find intermediate solution \(\tilde{U}(t_{n+1}) \) on \([t_n, t_{n+1}]:\)

\[
\frac{\partial \tilde{U}}{\partial t} = B\tilde{U} + J, \quad U(t_n) = \tilde{U}(t_{n+1})
\]

2. ‘Final’ solution for time step \(U(t_{n+1}) \) on \([t_n, t_{n+1}]:\)

\[
\frac{\partial U}{\partial t} = \frac{1}{\tau}AU, \quad U(t_n) = \tilde{U}(t_{n+1})
\]
Split Scheme Step 1

Updating \(\frac{\partial \tilde{U}}{\partial t} = B \tilde{U} + J \):

\[
\frac{\tilde{E}_{i}^{n+1} - E_{i}^{n}}{\Delta t} = \frac{c_{\infty}}{2} \delta_z (\tilde{H}_{i+\frac{1}{2}}^{n+1} + H_{i}^{n}) - c_{\infty} (J_{s})_{i}^{n+\frac{1}{2}}
\]

\[
\frac{\tilde{H}_{i+\frac{1}{2}}^{n+1} - H_{i+\frac{1}{2}}^{n+1}}{\Delta t} = \frac{c_{\infty}}{2} \delta_z (\tilde{E}_{i+\frac{1}{2}}^{n+1} + E_{i+\frac{1}{2}}^{n})
\]

\[
\tilde{P}_{i}^{n+1} = P_{i}^{n}
\]
Split Scheme Step 2

Updating $\frac{\partial U}{\partial t} = \frac{1}{\tau} AU$:

$$\frac{E_{i}^{n+1} - \tilde{E}_{i}^{n+1}}{\Delta t} = -\left(\frac{\varepsilon_{q} - 1}{2\tau}\right)(E_{i}^{n+1} + \tilde{E}_{i}^{n+1}) + \frac{c_{\infty}}{2\tau}(P_{i}^{n+1} + \tilde{P}_{i}^{n+1})$$

$$\frac{P_{i}^{n+1} - \tilde{P}_{i}^{n+1}}{\Delta t} = \left(\frac{\varepsilon_{q} - 1}{2c_{\infty}\tau}\right)(E_{i}^{n+1} + \tilde{E}_{i}^{n+1}) - \frac{1}{2\tau}(P_{i}^{n+1} + \tilde{P}_{i}^{n+1})$$

$$H_{i}^{n+1} = \tilde{H}_{i}^{n+1}$$
For analysis we combine steps 1 and 2 into an equivalent scheme; allows computation of $U(t_{n+1})$ without $\tilde{U}(t_{n+1})$.

Substitution: $\gamma = \Delta t(\varepsilon_q - 1)$

Equivalent Operator Splitting Scheme (E-OS)

$$
\begin{align*}
\delta_t(E_j^{n+1/2}) &= -\frac{2(\varepsilon_q - 1)}{2\tau - \gamma} E_j^{n+1} + c_\infty \delta_z(H_j^{n+1/2}) + \frac{2c_\infty}{2\tau - \gamma} (\bar{P}_j^{n+1/2}) \\
\delta_t(H_j^{n+1/2}) &= \frac{c_\infty}{4\tau - 2\gamma} \delta_z((2\tau + \gamma) E_j^{n+1} + (2\tau - \gamma) E_j^{n+1/2} - c_\infty \Delta t(\bar{P}_j^{n+1/2})) \\
\delta_t(P_j^{n+1/2}) &= \frac{2(\varepsilon_q - 1)}{c_\infty(2\tau - \gamma)} E_j^{n+1} - \left(\frac{1}{2\tau - \gamma}\right) (\bar{P}_j^{n+1/2}).
\end{align*}
$$
Accuracy

Theorem

The E-OS scheme is a first-order perturbation of a Crank-Nicolson scheme, and thus first order accurate.
Accuracy

Theorem

The E-OS scheme is a first-order perturbation of a Crank-Nicolson scheme, and thus first order accurate.

Proof.

Crank-Nicolson (C-N) schemes are known to be second order accurate. We compare each equation with its respective C-N counterpart; here we present the first equation.

\[
\delta_t(E_{j}^{n+1/2}) = -\frac{2(\varepsilon_q - 1)}{2\tau - \gamma} E_{j}^{n+1} + c_{\infty} \delta_z(\bar{H}_{j}^{n+1/2}) + \frac{2c_{\infty}}{2\tau - \gamma}(\bar{P}_{j}^{n+1/2})
\]

\[
\delta_t(E_{j}^{n+1/2}) = -\frac{\varepsilon_q - 1}{\tau}(\bar{E}_{j}^{n+1/2}) + c_{\infty} \delta_z(\bar{H}_{j}^{n+1/2}) + \frac{c_{\infty}}{\tau}(\bar{P}_{j}^{n+1/2}).
\]

Only the \(E \) and \(P \) terms differ. Taylor expansion on the differences yield \(O(\Delta t) \) error.
Von Neumann Stability Analysis

- We make the substitution $V_j^n = \tilde{V} e^{ikj\Delta z}$ for each equation of the E-OS scheme, in order to study the time evolution of the Fourier mode of the k^{th} wave.
- This yields the system

$$
\tilde{E}^{n+1} = \left(\frac{2\tau - \gamma}{2\tau + \gamma}\right)\tilde{E}^n + \theta \left(\frac{2\tau - \gamma}{2\tau + \gamma}\right)(\tilde{H}^{n+1} + \tilde{H}^n) + \frac{c_\infty \Delta t}{2\tau + \gamma}(\tilde{P}^{n+\frac{1}{2}})
$$

$$
\tilde{H}^{n+1} = \tilde{H}^n + \frac{\theta}{2\tau - \gamma} \left((2\tau + \gamma)\tilde{E}^{n+1} + (2\tau - \gamma)\tilde{E}^n - c_\infty \Delta t \tilde{P}^{n+\frac{1}{2}} \right)
$$

$$
\tilde{P}^{n+1} = \frac{2\gamma}{c_\infty (2\tau - \gamma + \Delta t)} \tilde{E}^{n+1} + \frac{2\tau - \gamma - \Delta t}{2\tau - \gamma + \Delta t} \tilde{P}^n
$$

with $\gamma = \Delta t(\varepsilon_q - 1)$, $\eta_\infty = \frac{c_\infty \Delta t}{\Delta z}$, and $\theta = \eta_\infty i \sin\left(\frac{k\Delta z}{2}\right)$.
Von Neumann Stability Analysis

- We rewrite the system in the form $\tilde{U}^{n+1} = S \tilde{U}^n$.
- Eigenvalue analysis on the stability matrix S prohibitively convoluted, so we conduct numerical experiments to show stability over a broad range of k.
- Stability experiments and numerical simulations indicate the scheme is stable.
Von Neumann Stability Analysis

Largest eigenvalue as a function of k
To conduct dispersion analysis we make the substitution into the von Neumann analysis of

\[\tilde{V}^n = V_0 e^{-i\omega n \Delta t}, \]

yielding in terms of the stability matrix \(S \)

\[
\begin{bmatrix}
E_0 e^{-i\omega (n+1) \Delta t} \\
H_0 e^{-i\omega (n+1) \Delta t} \\
P_0 e^{-i\omega (n+1) \Delta t}
\end{bmatrix}
= S
\begin{bmatrix}
E_0 \\
H_0 \\
P_0
\end{bmatrix}
\]

\[e^{-i\omega n \Delta t}. \]

This leads us to conclude that \((S - e^{-i\omega \Delta t}I)U_0 = 0\), so the dispersion relation is

\[\det(S - e^{-i\omega \Delta t}I) = 0. \]
Numerical Dispersion Experiments

- We solve for the wave number k as a function of ω and compare to the exact dispersion relation for Debye media,

$$k_{\text{ex}}(\omega) = \frac{\omega}{c} \sqrt{\frac{\varepsilon_s - i \omega \tau \varepsilon_{\infty}}{1 - i \omega \tau}}.$$

- Phase error is defined to be

$$\Phi(\omega) = \frac{|k(\omega) - k_{\text{ex}}(\omega)|}{|k_{\text{ex}}(\omega)|}.$$

- The operator splitting scheme is more dispersive than the Yee scheme, but by less than an order of magnitude.
Numerical Dispersion Experiments

Phase error as a function of k
A numerical experiment was run simulating an energy source travelling in one dimension through free space, a Debye medium, and then free space again.

- Simulates real-world interrogation applications
- Used Yee scheme with high accuracy \((h_\tau = 0.001)\) as a reference
 - \(\Delta t = \tau h_\tau\)
 - \(\Delta z = c\Delta t / \eta\)
Pulse Amplitude During Experiment

Comparison of Yee and Operator Splitting Schemes
Runtimes

- As expected, Yee scheme had faster run times in one dimensional case.
As expected, Yee scheme had faster run times in one dimensional case.

Bottleneck of the operator splitting scheme is computation of a large matrix inverse.

The inverse matrix needed to solve the operator splitting scheme needs only to be computed once.

The Yee scheme cannot take advantage of a single-cost computation.
Runetimes

- As expected, Yee scheme had faster run times in one dimensional case.
- Bottleneck of the operator splitting scheme is computation of a large matrix inverse.
- The inverse matrix needed to solve the operator splitting scheme needs only to be computed once.
- The Yee scheme cannot take advantage of a single-cost computation.
- It is strongly expected that in higher dimensions the operator splitting scheme can take advantage of single-cost computations and reduction to multiple 1-D problems.
Conclusions

Summary

- This operator splitting scheme is numerically convergent and unconditionally stable.
- Improvements in computation time are expected in higher-dimensional settings to be built upon the one-dimensional scheme.

Acknowledgements

- This was an REU project funded by an NSF-REU Supplement, proposal DMS-0811223

