DISSIMILARITY THREE WAYS

BENGALI CORONALS SEEN THROUGH:

ECHO REDUPLICATION

CONFUSABILITY

AND LEXICAL STATISTICS

SAMEER UD DOWLA KHAN, REED COLLEGE IIT DELHI COLLOQUIUM, 18 NOVEMBER 2016

OUTLINE

Overview

• Identity and similarity in phonology

Echo reduplication

- Identity avoidance, with a puzzle from English
- Production data from Bengali
- Gradient similarity avoidance

Similarity metric

- Shared natural classes
- Weighted shared natural classes

Other expressions of gradient similarity

- l exical statistics
- Perceptual confusability

Synthesis of results

CATEGORICAL IDENTITY/SIMILARITY

- Many processes incorporate categorical identity
 - Reduplication
 - Sibilant harmony in Chumash (Beeler 1970)
 - [ki∫kín] + [us] ⇒ *[ki∫kínus] ⇒ [kiskínus] 'l saved it for him'
 - Haplology (identity avoidance)
 - merry + -ly_{ADV} ⇒ merrily_{ADV}
 - silly + -ly_{ADV} ⇒ *sillily_{ADV} ⇒ silly_{ADV}
 - friend+ $-ly_{ADJ} + -ly_{ADV} \Rightarrow *friendlily_{ADV} \Rightarrow friendly_{ADV}$
- Often broadened to a natural class: categorical similarity
 - Vowel harmony in Turkish (Tosun 1999)
 - [kwz] + [lar] ⇒ [kwzlar] 'girls'
 - [jyz] + [tar] ⇒ *[jyztar] ⇒ [jyztar] 'faces'

GRADIENT SIMILARITY

- But some phenomena in perception and the lexicon are best described as involving gradient similarity
 - Lexical cooccurrence effects in Muna (Coetzee & Pater 2005)
 - [d] is found in fewer roots with [t] than with [n]
 - Perceptual confusability in English (Cutler et al. 2004)
 - [t∫] is misidentified as [t] more often than as [dʒ]
- It's possible that cases of supposed categorical identity/ similarity are in fact extreme cases of gradient similarity
 - cf. Vowel harmony in Hungarian (Hayes & Londe 2006)

GOAL FOR THIS TALK

- Present data illustrating the phenomenon of fixedsegment echo reduplication in (Bangladeshi) Bengali
- Demonstrate that it is a case of gradient similarity
- Explore what kind of metric underlies the patterns seen
- Investigate lexical and perceptual expressions of similarity as a comparison

ECHO REDUPLICATION

Echo reduplication

- Most common in Igs across southern Asia, e.g. Hindi:
- $[nam v_Fam]$ 'name(s), etc.'
- [roti υ_roti] 'bread, etc.'
- Phonological properties
 - Total reduplication
 - Systematic replacement of some material in reduplicant (RED) with one or more fixed segments
- Semantic properties
 - Typically denotes generalization: 'X, etc.', 'superset of X'
 - In some lgs, it can also be disparaging

ECHO REDUPLICATION

- Representative examples:
- Fixed C in Turkish [m_F] (Southern 2005)
 - [kutu] 'box' \Rightarrow [kutu m_F utu] 'box(es), etc.'
 - [∫aka] 'fun' ⇒ [∫aka m_Faka] 'easily', 'calmly'
- Fixed V in Eastern A-Hmao $[\acute{u}_F]$ (Mortensen 2006)
 - [ámâ] 'eye' ⇒ [ámú_F âmâ] 'eyes, ears, mouth, and nose'
 - [kíláw] 'strip of cloth' ⇒ [kílú_F kíláw] 'strips of cloth, etc.'
- Fixed CV in Tamil $[ki(!)_F]$ (Keane 2006)
 - [paŋam] 'money' ⇒ [paŋam ki_Fŋam] 'money, etc.'
 - [ma:tu] 'cattle' ⇒ [ma:tu ki:_Ftu] 'cattle, etc.'

ECHO REDUPLICATION

- Unlike prototypical reduplication, echo reduplication typically requires the base and RED to be non-identical
 - Unlike "emergence of the unmarked" cases of base-RED nonidentity, e.g. Sanskrit (Steriade 1988)
 - Unlike "default fixed segmentism", e.g. Yoruba (Alderete et al. 1999)
- Presence of the fixed segment should be enough to generate base-RED nonidentity...
- ...unless the fixed segment is identical to the segment it is meant to replace

IDENTITY AVOIDANCE

- \blacksquare [m]-initial words in Turkish [m_F] have **no echo form**
 - [para] 'money' ⇒ [para m_Fara] 'money, etc.'
 - [masa] 'table' ⇒ *[masa m_Fasa] 'towel, etc.' ⇒ NO OUTPUT
- \blacksquare [m]-initial words in Abkhaz [m_F] take **backup** [t \int_F] (Vaux 1996)
 - [gádʒak'] 'fool' ⇒ [gádʒak' m_Fádʒak'] 'fool, etc.'
 - [maát] 'money' \Rightarrow *[maát m_F aát] \Rightarrow [maát $t \int_F$ aát] 'money, etc.'
- In Classical Tibetan [a_F], base takes backup [o_F] (Beyer 1992)
 - [ndzog] ⇒ [ndza_Fg ndzog] 'jumbled up'
 - [glen] ⇒ [gla_Fn glen] 'very stupid'
 - [ŋan] ⇒ *[ŋarn ŋan] ⇒ [ŋan ŋorn] 'miserable'

IDENTITY AVOIDANCE

- Through various means, Igs work to avoid categorical identity between base and RED in echo forms
- Survey of echo forms in >100 lgs of India found identity avoidance in every case (Trivedi 1990)
- Previous work on echo forms generally describe a straightforward case of categorical identity avoidance
- No one has yet confirmed that this avoidance pattern does not extend to natural classes, or that it is not gradient

A PUZZLE FROM ENGLISH

- What about English $[\int m_F]$?
 - [dakt σ] 'doctor' \Rightarrow [dakt σ $\int m_F akt\sigma$] 'doctor_DISMISSIVE'
 - [skul] 'school' \Rightarrow [skul $\int m_F ul$] 'school_{DISMISSIVE}'
- Online survey, 190 respondents (Nevins & Vaux 2003)
- **Identity avoidance**: 95–97% of speakers rejected echo forms with $[\int m_F]$ for the 3 $[\int m]$ -initial words
 - [∫muz] 'schmooze' ⇒ *[∫muz ∫m_Fuz] 'schmooze_{DISMISSIVE}'
- Interestingly, 30% of speakers also rejected echo forms with $\lceil \int m_F \rceil$ for the one $\lceil \int n \rceil$ -initial word... **why??**
 - [$\int n\alpha z$] 'schnozz' \Rightarrow *[$\int n\alpha z \int m_F \alpha z$] 'schnozz_{DISMISSIVE}'

A PUZZLE FROM ENGLISH

- Possible explanations:
- The "two dialects" possibility
 - 65% of subjects obey identity avoidance
 - 30% obey categorical similarity avoidance, where $[\int n]$ and $[\int m]$ are of the same category: "sounds similar to $[\int m_F]$ "
- The "matter of degree" possibility
 - 95% obey gradient similarity avoidance, of whom:
 - 65% considered [$\int n$] and [$\int m_F$] are sufficiently dissimilar
 - 30% considered [$\int n$] and [$\int m_F$] are excessively similar

A PUZZLE FROM ENGLISH

- Another possible explanation: "this isn't English"
 - Humorous and possibly peripheral to the language
 - Less common in English than in other lgs
 - [$\int m$] is **highly marked**, restricted to **borrowings** from Yiddish
 - Construction is possibly borrowed from Yiddish (Southern 2005)

MOTIVATION

- To understand if echo reduplication can employ gradient similarity avoidance, we need a lg in which:
 - Echo reduplication is a fully productive, linguistic feature
 - The fixed segment is a relatively unmarked sound
 - The fixed segment has many similar sounds

Bengali¹ is an ideal test case

- Default fixed segment $[t_F]^2$: crosslinguistically unmarked
- [t] has high token freq. (definite marker & classifier [-ta])
- Attested backup fixed segments $[m_F \ f_F \ p_F \ u_F]$ (Ray et al. 1966)
- Inventory has many [t]-like sounds: [th d dh t th d tc s...] (Khan 2010)

¹ Specifically, urban colloquial Bangladeshi varieties

 $^{^{2}}$ [t th d th] can be retroflex in Bengali, but are typically alveolar in these varieties (Khan 2010)

QUESTIONS

- Does echo reduplication in Bengali involve...
 - Categorical identity avoidance,
 - Categorical similarity avoidance, or
 - Gradient similarity avoidance?
- If it is the latter, how can similarity be objectively measured on a gradient scale?
- As a comparison, we can investigate other parts of Bengali phonology that expected to employ this gradient similarity:
 - Lexical cooccurrence restrictions
 - Perceptual confusability

EXPERIMENT I: PRODUCTION

■ Basic design: native speakers produce echo RED for base stimuli with carefully-selected initial C

Expectations:

- [ka∫i] 'cough' ⇒ [ka∫i t_ra∫i]
- [b^hidz:a] 'having gotten wet' ⇒ [b^hidz:a t_Fidz:a]
- [tika] 'vaccine' \Rightarrow *[tika t_F ika] \Rightarrow [tika m_F ika] (identity violation)
- Question: how will sounds similar to [t_F] behave?
 - [t^haj∫:a] 'having stuffed' ⇒ [t^haj∫:a t_Faj∫:a] (no violation)?
 OR
 - $[t^h aj \int a] \Rightarrow *[t^h aj \int a t_F aj \int a] \Rightarrow [t^h aj \int a t_F aj \int a]$ (similarity violation)?

- 60 stimulus words
 - Disyllabic stems
 - Content words: N, A, V (perfective participles)
- 2 registers of urban colloquial Bangladeshi Bengali
 - High register: closer to written Kolkata Standard
 - Low register: closer to eastern regional varieties
- Produced by adult female speaker
 - Proficient in both registers
 - 2 reps per variety = 240 recordings
 - Recorded in sound-treated booth on Telex M-540 mic

- 60 test words fell under 3 conditions:
- **Identity**: [t]-initial words
- Similarity: words with [t]-like initials
 - Coronal obstruents [th d t th tc s~tch ∫]
- Control: words with non-[t]-like initials
 - Coronal sonorants [n 1]
 - Non-coronals [k h p f b^{fi} m]

■ Consonants of Bangladeshi Standard Bengali (Khan 2010)

Identity Similarity Control

	Labial	Dental	Alveolar	Post-Alv	Velar/Glot
Stop	p b b ⁶	t th d dh	t th d dh		k k ^h g g ^{fi}
Affricate			tç tç ^h dz dz ^{fi}		
Fricative	f	S		S	h
Liquid	•				
Nasal	m		(ŋ)		

■ Consonants of Bangladeshi Standard Bengali (Khan 2010)

Identity Similarity Control

	Labial	Dental	Alveolar	Post-Alv	Velar/Glot
Stop	p b b ⁶	t th d dh	t th d dh		k k ^h g g ^{fi}
Affricate			tç tçh dz dzh		
Fricative	f	S		ſ	h
Liquid		1 1			
Nasal	m	n			(ŋ)

EXPERIMENT I: SETUP

- 30 speakers of Bengali
 - Varied dialect background
 - Residents of CA
 - Paid \$10
- Heard stimulus
 - Participant selected preferred register
 - Order randomized for each speaker
- Asked to produce echo reduplicated form
 - $[ka \int i]$ 'cough' \Rightarrow $[ka \int i t_F a \int i]$ 'cough, etc.' given as example
- Responses were transcribed

EXPERIMENT I: HYPOTHESES

- **Identity** words will never use [t_F]
- Control words will always use [t_F]
- Similarity words are what are being tested:
 - Hypothesis 1: similarity = control (categorical identity)
 - Hypothesis 2: similarity = identity (categorical similarity)
 - Hypothesis 3: similarity is on a continuum

Identity Similarity Control
$$*[t...t_F] \neq [t^h...t_F] = [b^h...t_F]$$

EXPERIMENT I: HYPOTHESES

- Identity words will never use [t_F]
- Control words will always use [t_F]
- Similarity words are what are being tested:
 - Hypothesis 1: similarity = control (categorical identity)
 - Hypothesis 2: similarity = identity (categorical similarity)
 - Hypothesis 3: similarity is on a continuum

Identity Similarity Control
$$*[t...t_F] = *[t^h...t_F] \neq [b^h...t_F]$$

$$[t^h aj \int a] \Rightarrow *[t^h aj \int a t_F aj \int a] \Rightarrow [t^h aj \int a m_F aj \int a]$$

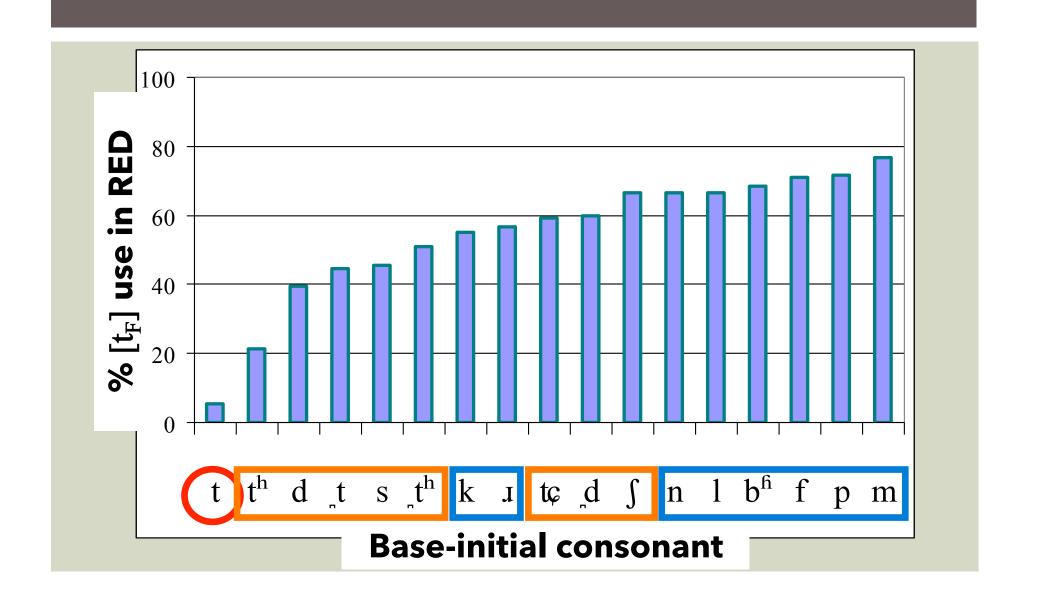
EXPERIMENT I: HYPOTHESES

- **Identity** words will never use [t_F]
- Control words will always use [t_F]
- Similarity words are what are being tested:
 - Hypothesis 1: similarity = control (categorical identity)
 - Hypothesis 2: similarity = identity (categorical similarity)
 - Hypothesis 3: similarity is on a continuum

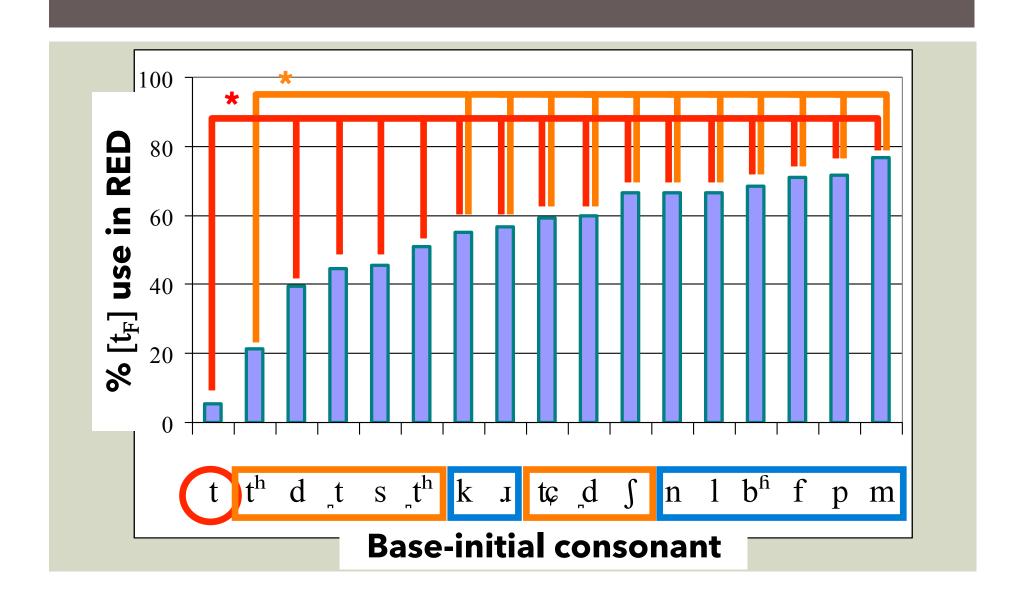
Identity Similarity Control
$$*[t...t_F] \neq ?[t^h...t_F] \neq [b^h...t_F]$$

$$[t^h aj \int a] \Rightarrow [t^h aj \int a t_F aj \int a] \sim [t^h aj \int a t_F aj \int a]$$

EXPERIMENT I: RESULTS


- Hypothesis 3 was borne out
- Similarity words lie on a continuum
 - Disprefer [t_F] but not outright ungrammatical
 - Some consonants are more [t]-like in behavior than others
- Seems like Cs that take [t_F] less often are also phonetically closer to [t]

t th d t ... bh f p m


Least likely to be replaced by [t_F]

Most likely to be replaced by [t_F]

EXPERIMENT I: RESULTS

EXPERIMENT I: RESULTS

EXPERIMENT I: DISCUSSION

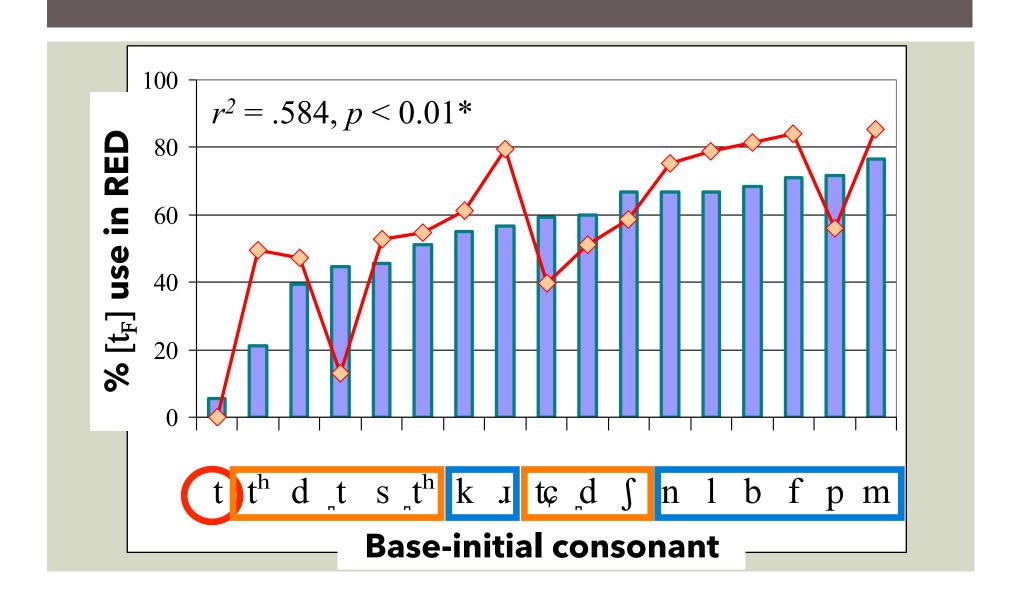
- Echo reduplication in Bengali appears to incorporate a notion of gradient similarity avoidance
 - No straightforward clustering of consonants
 - Heavy overlap across clusters
 - Like the "matter of degree" hypothesis from English puzzle

NEW QUESTIONS

- We should confirm our suspicion that our reduplication data can be modeled on an objective scale of similarity
- Is there a **metric** that Bengali speakers are using to calculate the similarity of an initial C and [t]?
- Metric has to be gradient, possibly language-specific

SHARED NATURAL CLASSES

- Best-known option is **shared natural classes (SNC) metric** (Frisch et al. 1995/2004)
- Similarity of two Cs is based on the number of natural classes they share in the inventory
- Universal claim with language-specific application
- **Hypothesis:** the more natural classes shared between a C and [t], the less likely it will take $[t_F]$ in its echo RED


SNC: METRIC

■ In the SNC metric, similarity of C_1 and [t] is quantified as:

$$sim(C_1, t) = \frac{\text{shared by } (C_1, t)}{\text{shared } + \text{mon-shared } \\ \text{natural classes } \text{natural classes}$$

Compared SNC-similarity (line) to Exp 1 results (bars)

SNC: CORRELATION

SNC: DISCUSSION

- The SNC metric does an okay job overall $(r^2 = .584)$
- However, the area where it crucially fails to predict the data is the similarity set (coronal obstruents)
- The metric treats [t] as inherently more similar to [t] and [t] than to [t]... is there a way to adjust that?

SNC: THOUGHT EXPERIMENT

- Original SNC metric derives directly from the phoneme inventory and feature set
- But what if we maintain the basic model but incorporate feature weights?
- Let's try a little thought experiment
- Weighting [dist] over [spread gl]: the [t t] distinction can be "heavier" than the [t - th] distinction
- If this improves our metric, we can then pursue the question of whether these weights are justified

WEIGHTED SNC: METRIC

■ In an SNC-like model with feature **weights**, similarity of C₁ and [t] is quantified as follows: (Wilson, p.c.)

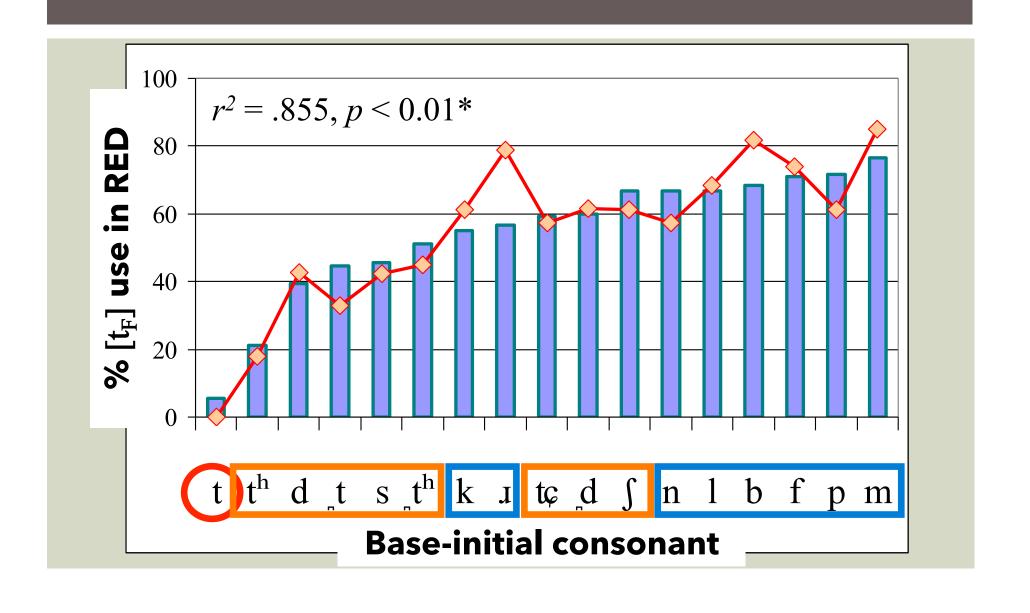
#features
$$sim(C_1, t) = \exp(-\sum_{i=1}^{n} w_i(1 - \delta_i(C_1, t)))$$

 $\mathbf{w_i}$ = weight of the feature f_i $\delta_i(C_1, t) = 1$ (feature value shared) or 0 (not shared)

Where weights are drawn from the variation in the reduplication results, as follows:

WEIGHTED SNC: METRIC

 \blacksquare Probability of $[t_F]$ use in the RED of a base with initial C_1


$$P = ((m!) \div (n!(m-n)!) (1-sim(C_1, t))^n (sim(C_1, t))^{m-n}$$

P = probability that C_1 -initial base will be reduplicated with $[t_F]$ n times out of a total of m trials

m = number of reduplications for C_1 -initial word n = number of reduplications with $[t_F]$ for C_1 -initial word

Compared weighted similarity (line) to Exp 1 results (bars)

WEIGHTED SNC: CORRELATION

WEIGHTED SNC: DISCUSSION

- With 4 adjusted feature weights, the SNC metric can closely model the reduplicative data $(r^2 = .855)$
 - [voice]: .554
 - [distributed]: .400
 - [strident]: .249
 - [spread glottis]: .198
 - All other features have a weight of 0.100

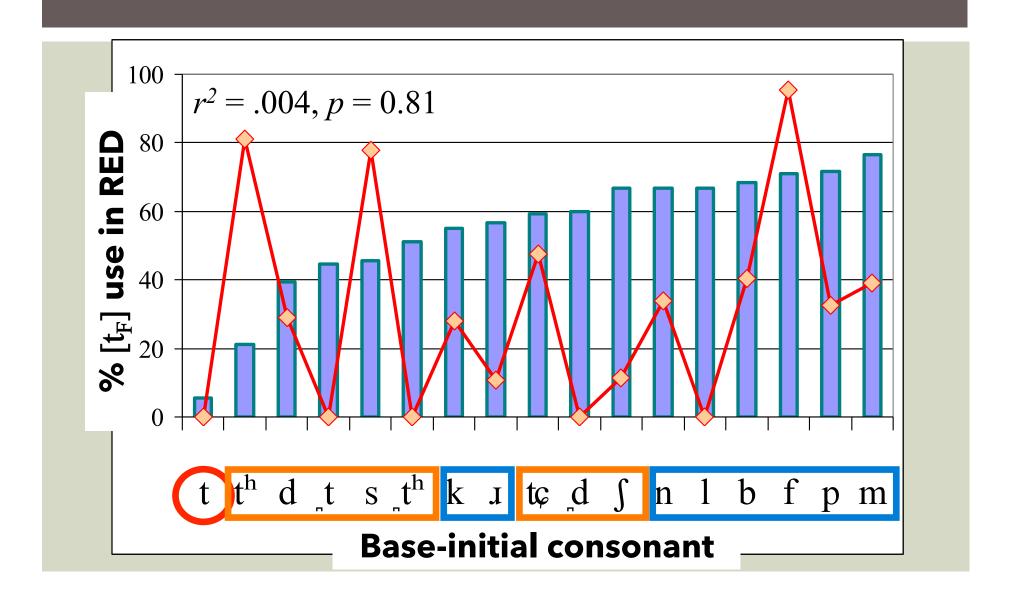
NEW QUESTION

- Okay, but have we compromised the model?
- Is it no longer a similarity metric, but just a model of the reduplicative data?
- Let's see if our reduplicative data resemble other areas where gradient, Ig-specific similarity is arguably relevant:
 - Lexical cooccurrence (McCarthy 1994)
 - Perceptual confusability (Shepard 1972)

COOCCURRENCE

- Similarity of two Cs is often negatively correlated with their cooccurrence within roots (Greenberg 1950)
 - English: two LAB or two DOR are underattested in [sCVC]: skip, speak, skim, smack..., *smap, *scog, *spobe, *speam (Fudge 1969)
 - Arabic: velars & uvulars rarely cooccur within roots (Frisch et al. 2004)
- **Hypothesis**: the less often a C cooccurs with [t] in a root, the less often it will take $[t_F]$ in its echo RED
- If we see a strong correlation with the reduplicative data, this could be independent support for our weighted model

COOCCURRENCE: METRIC


■ Similarity of initial C₁ and medial [t] is the inverse of their observed / expected lexical cooccurrence: (Frisch et al. 2004)

$$sim(C_{1}, t) = \frac{ \# [C_{1}VCV]}{\# [CVCV]} \times \frac{\# [CVV]}{\# [CVCV]}$$

$$\frac{\# [C_{1}VtV]}{\# [CVCV]}$$

- Examined the cooccurrence of all initial Cs with medial [t] in CVCV roots in a corpus of Bengali (Mallik et al. 1998)
- Compared cooccurrence rate (line) to Exp 1 results (bars)

COOCCURRENCE: CORRELATION

COOCCURRENCE: DISCUSSION

- The lexical cooccurrence model of similarity **fails to predict** the observed $[t_F]$ -avoidance patterns $(r^2 = .004)$
- Possible explanations:
- Lexical cooccurrence in Bengali involves similarity, but echo reduplication does not (unlikely, see results)
- Lexical cooccurrence in Bengali does not involve similarity, while echo reduplication does (possible)
- Low n? Corpus had 865 CVCV roots; 64 with medial [t]
 - cf. Arabic corpus of 2674 roots (Frisch et al. 2004)

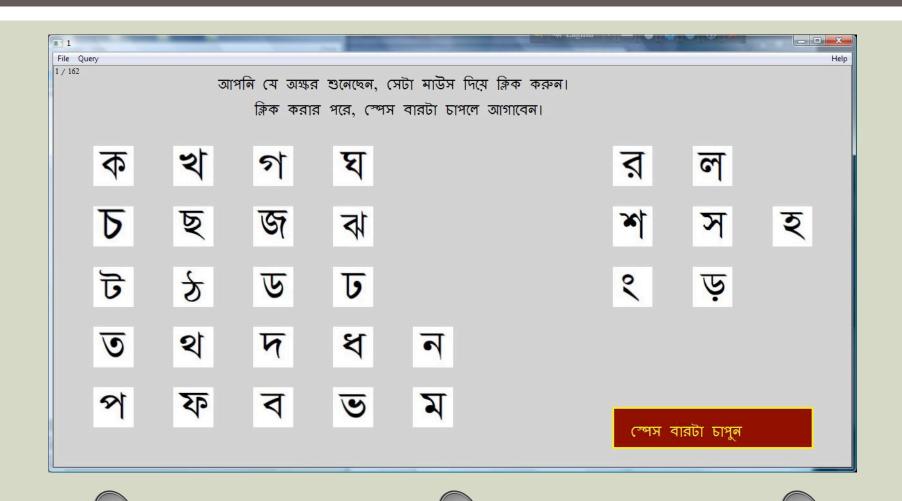
CONFUSABILITY

- The other area to look for the effects of gradient similarity is in perceptual confusability
 - Hindi: [t] is misidentified as [t] more than as [d] (Ahmed & Agrawal 1968)
- **Hypothesis**: Cs more likely to be (mis)perceived as [t] are also less likely to take $[t_F]$ in echo RED
- If we see a strong correlation with the reduplicative data, this could be independent support for our weighted model

EXPERIMENT II: SETUP

- Multiple Forced Choice (MFC) listening experiment
 - Participants identify the consonant they hear
 - Run in Praat (Boersma & Weenink 2013)
 - Sony MDR-V200 headphones connected to laptop
 - Experiments took place in quiet room in participants' homes
- 25 speakers of Bengali (13F, 12M)
 - Reported no hearing difficulties
 - Varied dialect background
 - Residents of or visitors to CA
 - Paid \$20

EXPERIMENT II: STIMULI

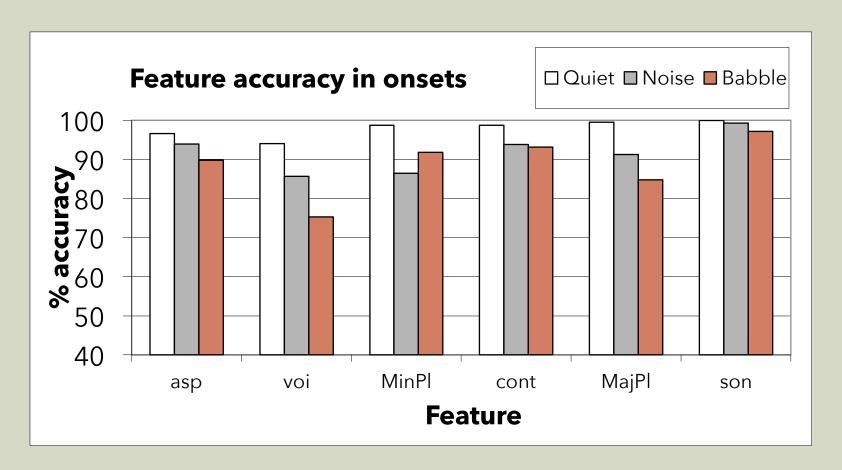

54 syllables

- Onsets: 27 legal [Ca] syllables (all Cs but [η τ])
- Codas: 27 legal [aC] syllables (all Cs but [d^{fi} h])
- Produced by adult female speaker
 - Best of several reps was normalized for amplitude

Blocked by 3 masking conditions

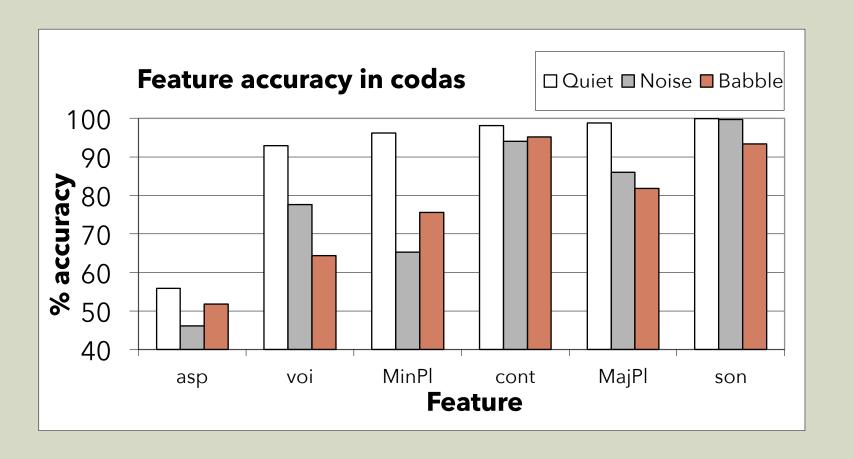
- Multi-talker babble
- Pink noise
- Quiet (no added sound)
- 54 syllables x 3 conditions x 3 reps = 486 trials

EXPERIMENT II: TASK



EXPERIMENT II: HYPOTHESES

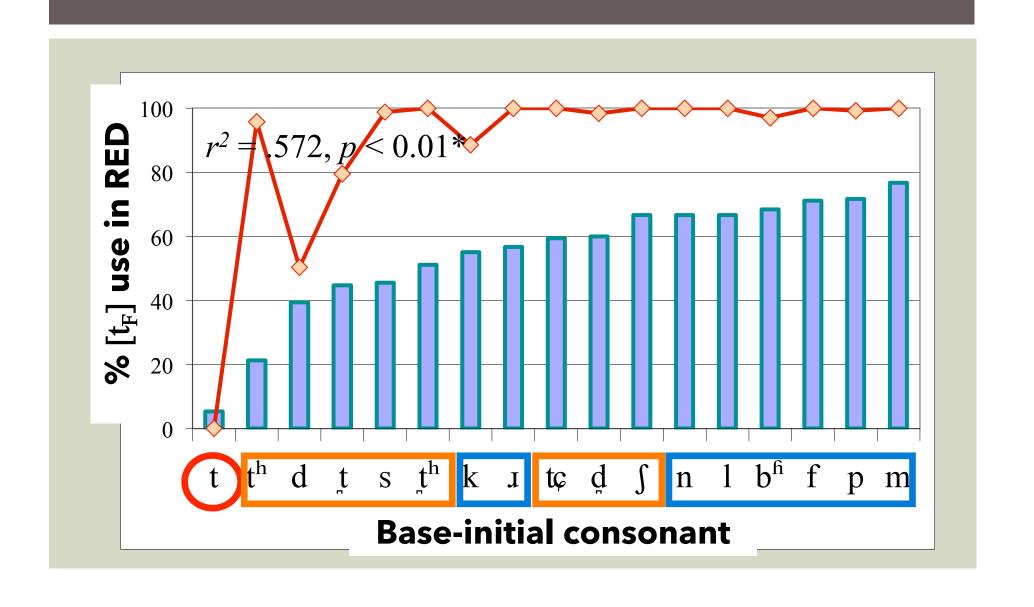
- The C most confused with [t] should be [th]
 - Generalized: aspiration should be the most confusable feature
- Next most confused with [t] should be [d]
 - Generalized: voicing should be the 2nd most confusable feature
- After that should be [t]
 - Generalized: [distributed] and other minor place distinctions should be the 3rd most confusable
- After that should be [s]
 - Generalized: [strident] and other manner-related distinctions should be less confusable than the preceding


EXPERIMENT II: RESULTS

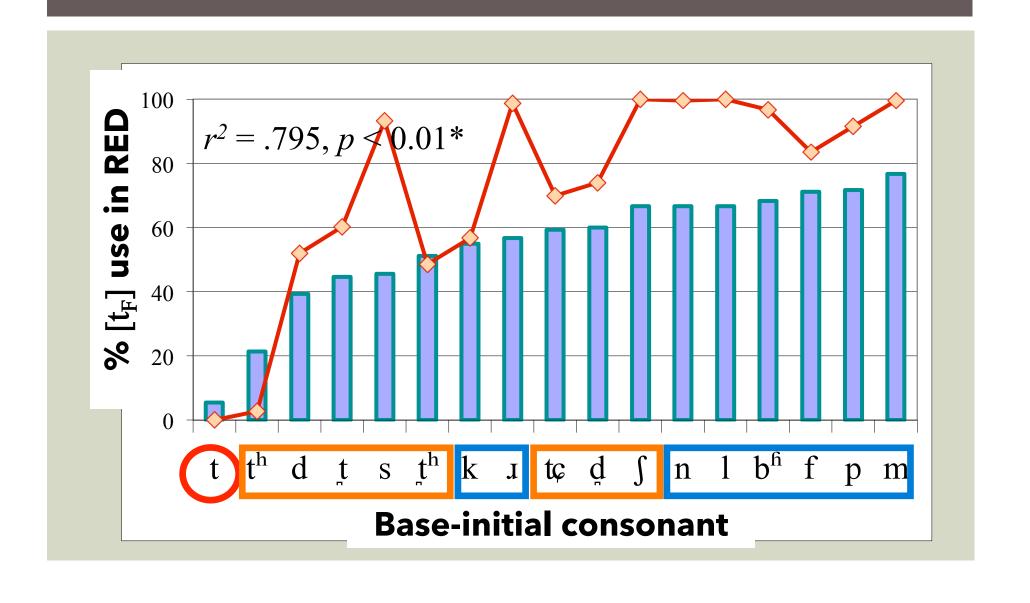
■ Onset accuracy: 92% in quiet, 70% in noise, 60% in babble

EXPERIMENT II: RESULTS

■ Coda accuracy: 66% in quiet, 39% in noise, 34% in babble


CONFUSABILITY: METRIC

■ Similarity of C_1 and [t] as drawn from confusion rate is quantified as follows: (Shepard 1972)


$$sim(C_1, t) = \frac{\#(C_1:t) + \#(t:C_1)}{\#(C_1:C_1) + \#(t:t)}$$

- Compared Exp 2 perceptions to Exp 1 productions
 - Removed "quiet" condition results (at ceiling)
 - Looked at onsets and codas separately

ONSET CONFUSIONS: CORRELATION

CODA CONFUSIONS: CORRELATION

CONFUSABILITY: DISCUSSION

- Consonant confusions with [t] in coda position are well correlated with the reduplicative results $(r^2 = .795)$
- But! Echo reduplication involves judging the similarity of onsets; why does the reduplicative data more closely resemble coda confusion?
 - Onset confusions with [t] were overall rare
 - Acoustic cues are perceptually less salient in codas (Wright 2004), so this
 is where similarity (not just identity) is likely more often relevant

SYNTHESIS OF RESULTS

- Okay, we need a recap.
- What did we do again?
 - Task 1: examine fixed segment choice in echo reduplication
 - Task 2: establish that fixed segment choice is predicted by SNC
 - Task 3: improve the SNC in a thought experiment with weights
 - Task 4: find no correlation with lexical statistics
 - Task 5: find significant correlation with coda confusions

CONCLUSIONS

- The current study demonstrates that fixed segment choice in Bengali echo reduplication is highly variable
- I argue that the choice of fixed segment involves a systematic avoidance of similarity, because:
 - The patterns are (partially) predicted by the SNC metric
 - The patterns correlate with confusion rates (in codas)

CONCLUSIONS

- The patterns clearly show that this similarity is gradient
- Many other phenomena previously treated as categorical have since been shown to be gradient
 - e.g. vowel harmony in Hungarian (Hayes & Londe 2006)

CONCLUSIONS

- The current study proposes a modified version of the SNC metric of similarity
- I propose feature weighting for lg-specific application in diverse phonological phenomena
- The study also provides an interesting case in which the SNC metric can measure similarity in phonological phenomena other than lexical cooccurrence effects

REMAINING QUESTIONS

- Is Bengali echo reduplication a special case, or should we look for gradient similarity in many more lgs?
- Why are the lexical cooccurrence effects of Bengali so different from the reduplicative results?
- How does this change as speakers deal with multiple phoneme inventories, e.g. bilinguals?

ACKNOWLEDGMENTS

- This study was supported in part by Reed College's Stillman Drake Fund.
- To my participants and stimulus producers, to Colin Wilson (JHU), Kie Ross Zuraw (UCLA), Marc Garellek (UCSD), and Megha Sundara (UCLA), and to the audience at IIT Delhi:

অসংখ্য ধন্যবাদ!

[ɔʃoŋkʰo d̞ʰonːobad̞]

REFERENCES

Ahmed, Rais; Agrawal, S. S. 1968. Significant features in the perception of (Hindi) consonants. JASA 45(3).

Alderete, John; Beckman, Jill; Benua, Laura; Gnanadesikan, Amalia; McCarthy, John; Urbanczyk, Suzanne. 1999. Reduplication with fixed segmentism. *Linguistic Inquiry* 30(3), 327-364.

Beeler, Madison S. 1970. Sibilant harmony in Chumash. IJAL 36(1), 14-17.

Beyer, Stephan V. 1992. The Classical Tibetan language. SUNY Press.

Boersma, Paul; Weenink, David. 2013. Praat: doing phonetics by computer, version 5.3.39, http://www.praat.org/

Coetzee, Andries; Pater, Joe. 2005. Gradient phonotactics in Muna and Optimality Theory. Ms.

Cutler, Ann; Weber, Andrea; Smits, Roel; Cooper, Nicole. 2004. Patterns of English phoneme confusions by native and non-native listeners. *JASA* 116(6), 3668-3678.

Frisch, Stefan; Pierrehumbert, Janet; Broe, Michael. 1995/2004. Similarity avoidance and the OCP. NLLT 22, 179-228.

Fudge, E. C. 1969. Syllables. Journal of Linguistics 5, 253-287.

Greenberg, Joseph H. 1950. The patterning of root morphemes in Semitic. *Word* 6, 162-181.

Hayes, Bruce; Londe, Zsuzsa Cziráky. 2006. Stochastic phonological knowledge: the case of Hungarian vowel harmony. *Phonology* 23(1), 59-104.

Khan, Sameer ud Dowla Khan. 2010. Bengali (Bangladeshi standard). JIPA 40(2), 221-225.

Mallik, Bhakti Prasad; Bhattacharya, Nikhilesh; Kundu, Subhas Chandra; Dawn, Mina. 1998. The phonemic and morphemic frequencies of the Bengali language. Calcutta: The Asiatic Society.

REFERENCES (CONT.)

McCarthy, John J. 1994. The phonetics and phonology of Semitic pharyngeals. In Keating, Patricia (ed.) *Phonological structure and phonetic form: papers in laboratory phonology 3*, 191-233.

Mortensen, David. 2006. Logical and substantive scales in phonology. UC Berkeley PhD dissertation.

Nevins, Andrew; Vaux, Bert. 2003. Metalinguistic, shmetalinguistic: the phonology of shm-reduplication. Ms.

Ray, Punya Sloka; Hai, Muhammad Abdul; Ray, Lila. 1966. Bengali language handbook. Washington: Center for Applied Linguistics.

Shepard, Roger N. 1972. Psychological representation of speech sounds. In David, E. E.; Denes, P. B. (eds.) *Human communication: a unified view*, 67-113.

Southern, Mark. 2005. Contagious couplings: transmission of expressives in Yiddish echo phrases. Westport: Greenwood.

Steriade, Donca. 1988. Reduplication and syllable transfer in Sanskrit and elsewhere. *Phonology* 5(1), 73-155.

Tosun, Gülsat. 1999. Vowel harmony in Turkish and Turkmen. Ms.

Trivedi, G. M. 1990. Echo Formation. In Krisha, Shree (ed.) *Linguistic Traits Across Language Boundaries*. Anthropological Survey of India. Calcutta: Ministry of Human Resource Development.

Vaux, Bert. 1996. Abkhaz Mabkhaz: m-reduplication in Abkhaz and the problem of melodic invariance. Ms.

Wright, Richard. 2004. A review of perceptual cues and cue robustness. In Hayes, Bruce; Kirchner, Robert; Steriade, Donca (eds.) *Phonetically Based Phonology*. Cambridge.