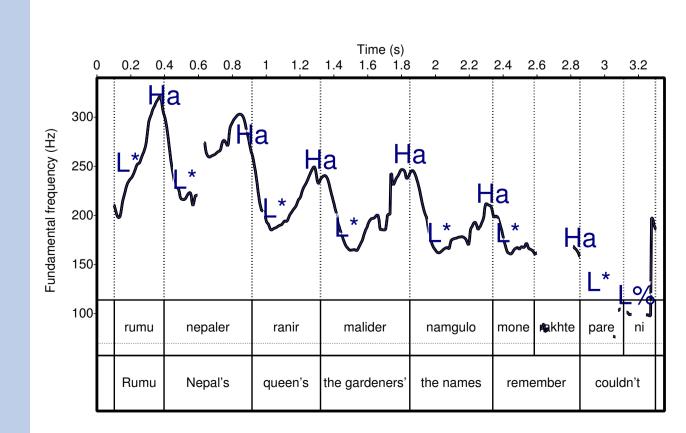


A cross-linguistic investigation of information structure in infant-directed speech

Kristine M. Yu (UMD College Park, UMASS Amherst), Sameer ud Dowla Khan (Brown University), Megha Sundara (UCLA)

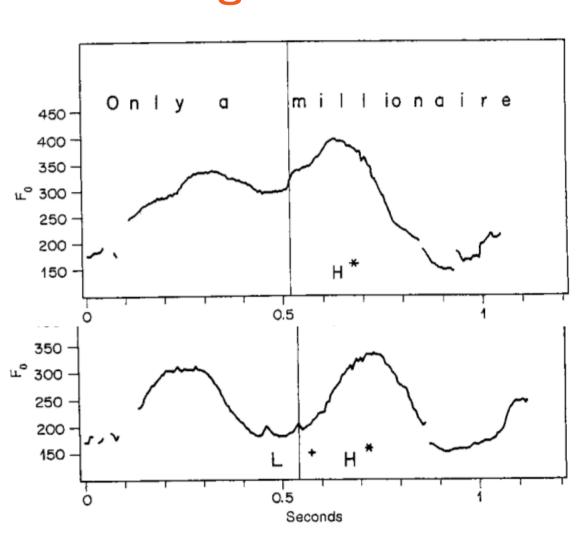
Abstract


- ► Cross-linguistically, **infant-directed speech (IDS)** (e.g. Blount & Padgug 1977, Fernald & Simon 1984, Grieser & Kuhl 1988, Fernald et al. 1989, Kitamura et al. 2002, Liu et al. 2007) shows **prosodic phonetic modifications such as an expanded pitch range**
- Hypothesis: prosodic modifications in IDS consistent not only with engaging the infant's attention, but also with signaling information structure relevant for IDS
- Cross-linguistic analysis in Bengali and English to tease apart language-specific prosodic correlates of information structure from global prosodic modifications
- Focus on **phonological** intonational analysis to index information structure

Information structure via intonational phonology

 Reliance on previous work on Bengali (Khan 2008; to appear) and English (e.g. Beckman and Ayers Elam 1993, Pierrehumbert and Hirschberg 1990) ToBI in non-IDS speech linking language-specific ToBI intonational categories and information structure

Bengali


- L*...Ha: default pattern of successive rises (see fig. below)
- L*+fH and fH* mark focus/surprise
- ▶ Boundary tones include default L%, topicalized HL%, etc.

► Successive L*...Ha rises in Bengali lab speech (Khan 2008)

English

- ► H*: default marker of salience in discourse
- ► L+H* and L*+H markers of focus/surprise
- Boundary tone inventory less rich than in Bengali

► English pitch accent (PA) types: H* (above), L+H* (below) (Pierrehumbert & Steele 1990)

Materials and Methods

- Speakers and speech materials
- ▶ 10 speakers for each language (5M/5F)
- Parents of young infants/children
- ► Speech materials: North Wind passage—Aesop's fable
- Standard language sample with controlled pragmatic context across languages
- Suitable for laboratory speech and IDS elicitation

Recording procedure

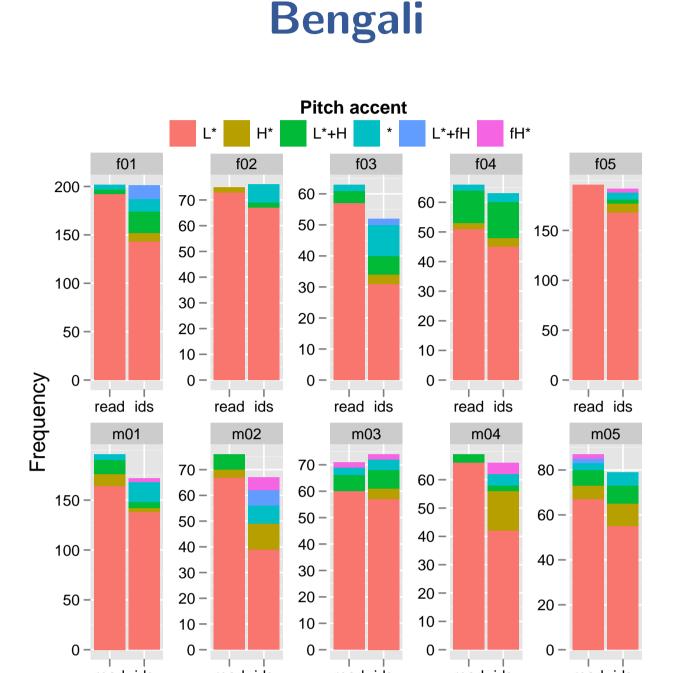
- ► Three repetitions for each speech style (lab speech, IDS)
- ▶ Lab (read) speech as control: "Read at a comfortable pace"
- ▶ Simulated IDS: "Read as if speaking to an infant (\approx 4-5 months)"
- Subjects given stuffed toys; infants not in room to minimize audio interruptions

Intonational analysis

- ► Annotation in Praat with phonemic transcription, syllable boundaries
- ► ToBI annotation as a tool for analyzing intonational phonology

Results: prosodic modifications for engaging listener's attention

► In both languages, parents reduced regularity of patterns of pitch variation in IDS


Bengali English Boundary level ip in in it in it is in it in in

► 1.5±0.3 times more higher level boundary tones and increased variety of boundary types disrupt regularity of rises in IDS.

► 1.3±0.3 times more boundary tones in IDS—more intermediate (ip) and high level (IP) breaks.

Results: changes in information structure in IDS

► Parents also made language-specific prosodic modifications consistent with increase in topicalization, focus in IDS

English

- More focus PAs: fH* (surprise), L*+fH (wh/corrective)
- More HL%: boundary tones marking topicalization
- ► For most speakers, more pitch accents—more words marked as salient in discourse
- ► More L+H* and L*+H: pitch accents marking focus/surprise

Conclusions

- ► IDS prosody showed language-specific modifications that both engage the listener and reflect the information structure relevant to IDS
- Reduction in regularity of language-specific pitch variation in IDS consistent with communicative goal of engaging infant's attention
- ► Increase in language-specific intonational phonological units known to mark focus/surprise and topicalization

Acknowledgments

- ► Kristi Hendrickson, Amanda Ritchart, J'aime Roemer for help with recruitment, recordings, and intonational labeling
- Sun-Ah Jun for discussions
- ► NSF graduate fellowship to first author and NSF BCS-0951639

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.