

CONSONANT CONFUSABILITY AND SIMILARITY AVOIDANCE PATTERNS

Sameer ud Dowla Khan • Reed College • skhan@reed.edu • 22nd Manchester Phonology Meeting

Questions

Goals

- 1. Establish confusion rates between pairs of Bengali consonants (Cs) in quiet, noise, and babble
- 2. Explore if confusability reflects similarity as applied in fixed segment (FS) reduplication

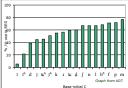
Background: C inventory

Bilabial	Labio- dental	Der	ntal	Alveolar	Pos alw	t- eolar	Velar	Glottal	·4-way [voi] & [asp] contrast
p b		ţ,	ď _e		t t ^h	d d ^{fi}	k g kh g ⁶		•3 MajPlaces: [lab], [cor], [dor]
					te te	₫s _e			
m		n					ŋ		within [cor]:
f		s J						h	dental,
						J			
		1					Table taken	from K10	(post-)alveolar, alveolopalatal

Background: FS reduplication

Fixed segment (FS) reduplication (FSR)

Substitution of a C with a FS in RED (198, N8V03) e.g. <u>doctor-schmoctor</u>, <u>table-schmable</u>


Substitution of a C with /t/ in RED, meaning 'X, etc.'

In most cases, use FS /t/: /loha/ 'iron' → /loha toha/ /b⁶aɪi/ 'heavy' \rightarrow /b⁶aɪi taɪi/

But use backup FS /f/ or /m/ $_{/tana/}$ 'pulling' \rightarrow $/_{\underline{t}ana}$ $\underline{f}ana/$ for /t/-initial words: */tana tana/ not OK

starting with **/t/-like C**: $\frac{11/Lona}{dota/}$ 'stripe' $\rightarrow \frac{1}{dota}$ for $\frac{1}{dota}$

Gradient behavior for words /tʰoṇa/ 'bag' → /tʰoṇa foṇa/ ??/tʰoṇa toṇa/ 21% OK ?/do.a to.a/ 39% OK

Rate of /t/avoidance = related to similarity?

Similarity = confusability?

If /t/-avoidance reflects confusability, the most to least confusable ftrs would be:

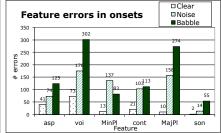
[asp], [voi], MinPl, [cont], MajPl, [son]

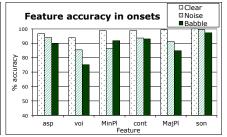
Methods

- experiment in Praat
- ·24 listeners
- •Heard os via headphones
- Clicked on letter perceived

Clear (92.0% accuracy)

Babble (59.2% accuracy)


•Most errors in [voi] & [asp]


- •Multiple Forced Choice ⋅3 added noise conditions from NOISEX database
 - •Babble: multi-talker speech •Pseudorandomized
 - •Noise: pink noise ·Clear: no noise
- •**54 legal σs**: [Ca], [aC] ·3 noise blocks, 3 reps
- •459 trials analyzed (/sa as ar/ removed)

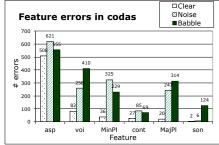
Confusion rates: onsets

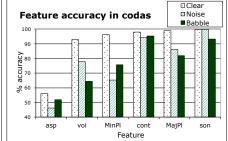
Noise (69.7% accuracy)

- Errors reflect percept of loud, high-fq burst
- •122/146 [cont] errors: fricatives heard as stops
- •123/161 MinPl errors: dentals heard as alveolars •95/158 MajPl errors: non-[cor] heard as [cor]

Confusion rates: codas

Clear (65.5% accuracy)


- •[asp] ~chance: 56%
- •Perc. neutralization, cf. Hindi (A&A68)
- •MinPl: percept of high-fg noise
- •5 alv misheard as non-alv
- •31 [cor] misheard as alveolar


Noise (38.8% accuracy)

•MinPl: percept of (messy,) high-fq noise

•194 [cor] misheard as alveolar, 131 as alveolopalatal •[cor] never misheard as dental

Babble (33.7% accuracy)

Correlations with FSR similarity

 Does confusability reflect the notion of similarity used in FSR?

What are the highest similarity scores between each C and /t/, as derived from confusions of /C t/? Similarity_{Ct} = (C,t + t,C) / (C,C + t,t)

Cle: /d/ .28, /d⁶/ .03, /t^h/ .03, /p/ .01, /k/ .01... Noi: /d/ .40, /t/ .29, /k/ .06, /th/ .03, /dh/ .02... Bab: /d/ .62, /k/ .17, /t/ .13, /d⁶/ .10, /b⁶/ .06...

Cle: /th/ .91, /th/ .09, /tc/ .07, /tch/ .06, /d/ .03... Noi: $/t^h/$ 1.0, $/t^h/$.63, $/k^h/$.48, /t/ .47, $/tc^h/$.30... Bab: /th/ .90, /d/ .90, /dh/ .79, /k/ .65, /gh/ .51...

/t/-avoidance rates in FSR

/th/ .78, /d/ .61, /t/ .55, /tch/ .54, /th/ .49...

Avoidance in FSR is best correlated with coda similarity ($r^2 = .69-.75$)

Conclusions and comparisons

First confusion matrices for Bengali [voi], [asp], [cont] confused in onset [asp], [voi], MinPl confused in coda

Coda confusions are best correlated with FS /t/-avoidance rates:

surprising as FSR targets onsets!

/t/-avoidance may reflect **confusability** across positions, noise contexts

Compare to confusability in **other lgs**:

Enalish

Onset: Place, [cont], [voi]/[asp], [son] (MENISS) Onset/coda: [voi]/[asp], Place, [cont]/[son] (CRaD4)

Onset: Place, [son], [voi], [cont], [asp] (ABAGS) Coda: [asp], [son], Place, [voi], [cont] (ABAGS)

References and acknowledgments

Many thanks to the 24 subjects and Marc Garellek (UCSD). This study was funded by the Stillman Drake Award