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Section 12 Time Series Regression with Non-

Stationary Variables 
The TSMR assumptions include, critically, the assumption that the variables in a regression 

are stationary. But many (most?) time-series variables are nonstationary. We now turn to 

techniques—all quite recent—for estimating relationships among nonstationary variables. 

Stationarity 

• Formal definition 

o 
( )

( )
( )

2var

cov ,

t

t

t t s s

E y

y

y y −

= μ

= σ

= γ

 

• The key point of this definition is that all of the first and second moments of y are the 

same for all t 

• Stationarity implies mean reversion: that the variable reverts toward a fixed mean after 

any shock 

Kinds of nonstationarity 

• Like most rules, nonstationarity can be violated in several ways 

• Nonstationarity due to breaks 

• Breaks in a series/model are the time-series equivalent of a violation of Assumption 

#0. 

o The relationship between the variables (including lags) changes either 

abruptly or gradually over time. 

• With a known potential break point (such as a change in policy regime or a large 

shock that could change the structure of the model): 

o Can use Chow test based on dummy variables to test for stability across the 

break point. 

o Interact all variables of the model with a sample dummy that is zero before 

the break and one after. Test all interaction terms (including the dummy 

itself) = 0 with Chow F statistic. 

• If breakpoint is unknown: 

o Quandt likelihood ratio test finds the largest Chow-test F statistic, excluding 

(trimming) the first and last 15% (or more or less) of the sample as potential 

breakpoints to make sure that each sub-sample is large enough to provide 

reliable estimates. 
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o QLR test statistic does not have an F distribution because it is the max of 

many F statistics. 

• Deterministic trends are constant increases in the mean of the series over time, though 

the variable may fluctuate above or below its trend line randomly. 

o t ty t v= α + λ +  

o v is stationary disturbance term 

o If the constant rate of change is in percentage terms, then we could model lny as 

being linearly related to time. 

o This violates the stationarity assumptions because ( ) ,tE y t=α+λ  which is not 

independent of t 

• Stochastic trends allow the trend change from period to period to be random, with given 

mean and variance. 

o Random walk is simplest version of stochastic trend: 1t t ty y v−= +  where v is 

white noise. 

o Random walk is limiting case of stationary AR(1) process 1t t ty y v−= ρ +  as ρ → 1 

o Solving recursively (conditional on given initial value y0),  

 1 0 1,y y v= +  

 2 1 2 0 1 2,y y v y v v= + = + +   

 
1

0 1 0 0
1 0

... .
t t

t t s t
s

y y v v y v y v
−

−τ
= τ=

= + + + = + = +   

 This violates stationarity assumptions because 

( )
1

2
0

0

var | var ,
t

t t vy y v t
−

−τ
τ=

 = = σ 
 
  which depends on t, and unconditional 

variance is infinite: ( ) 2

0 0

var var .t vy v
∞ ∞

τ
τ= τ=

 = = σ =∞ 
 
   

 Note comparison with stationary AR(1): 

• 0
1

,
t

t
t t

s

y y v
=

= + ρ   

• ( ) ( )
2

2 2
2

0 0

var var
1

v
t t vy v

∞ ∞ ττ
−τ

τ= τ=

σ = ρ = σ ρ = < ∞  − ρ 
   

o Random walk with drift allows for non-zero average change: 1t t ty y v−= α + +  

 This also violates the constant-mean assumption: 

 
1 0 1

2 1 2 0 1 2

1

0
0

,

2 ,

.
t

t t

y y v

y y v y v v

y y t v
−

−τ
τ=

= α + +
= α + + = + α + +

= + α +
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 
( )

( )
0 0

2
0

| ,

var | .

t

t v

E y y y t

y y t

= + α

= σ
 

 Both conditional mean and conditional variance depend on t  

 Both unconditional mean and unconditional variances are infinite 

 For AR(1) with non-zero mean: 

• ( ) ( )
1

0
0 0

.
t

t t ty y v v
− ∞

τ τ
−τ −τ

τ= τ=

= + ρ α + = ρ α +   

• ( )
0

,
1tE y

∞
τ

τ=

α= α ρ =
− ρ  

• ( ) ( )
2

2 2
2

0

var .
1

v
t vy

∞ τ

τ=

σ= σ ρ =
− ρ  

• Both unconditional mean and variance are finite and independent 

of t. 

• Difference between deterministic and stochastic trend 

o Consider large negative shock v in period t 

 In deterministic trend, the trend line remains unchanged. 

• Because v is assumed stationary, its effect eventually disappears 

and the effect of the shock is temporary 

 In stochastic trend, the lower y is the basis for all future changes in y, so 

the effect of the shock is permanent. 

o Which is more appropriate? 

 No clear rule that always applies 

 Stochastic trends are popular right now, but they are controversial 

Unit roots and integration in AR models 

• Note that the random-walk model is just the AR(1) model with ρ = 1. 

• In general, the stationarity of a variable depends on the parameters of its AR 

representation:  

o AR(p) is 1 1 ... ,t t p t p ty y y v− −= θ + +θ +  or ( ) .t tL y vθ =  

 (Can generalize to allow v to be any stationary process, not just white 

noise.) 

o The stationarity of y depends on the roots (solutions) to the equation ( ) 0.Lθ =   

 θ(L) is a p-order polynomial that has p roots, which may be real or 

imaginary-complex numbers. 

 AR(1) is first-order, so there is one root: ( ) 11 ,L Lθ = −θ  

( ) 1 1
1

1
0 1 0 1L L L Lθ = ⇔ − θ = ⇔ = θ ⇔ =

θ
, so 1/θ1 is the root of the 
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AR(1) polynomial. (Or 1/ρ in the simpler AR(1) notation we used 

above.) 

o If the p roots of ( ) 0Lθ =  are all greater than one in absolute value (formally, 

because the roots of a polynomial can be complex, we have to say “outside the 

unit circle of the complex plane”), then y is stationary. 

 By our root criterion for stationarity, the AR(1) is stationary if 
1

1
1,>

θ
 or 

1 1.θ <  

 This corresponds to the assumption we presented earlier that 1.ρ <  

• If one or more roots of ( ) 0Lθ =  are equal to one and the others are greater than one, 

then we say that the variable has a unit root.  

o We call these variables integrated variables for reasons we will clarify soon. 

o Integrated variables are just barely nonstationary and have very interesting 

properties. 

o (Variables with roots less than one in absolute value simply explode.) 

o The random-walk is the simplest example of an integrated process: 

 

( ) ( )

1

1

1

t t t

t t t

t t t

y y v

y y v

L y L y v

−

−

= +
− =
− = θ =

 

 The root of 1 – L = 0 is L = 1, which is a unit root. 

• Integrated processes 

o Consider the general AR(p) process 1 1 ,t t p t p ty y y v− −=α+θ + +θ +  which we 

write in lag-operator notation as ( ) .t tL y vθ =α+   

o We noted above that the stationarity properties of y are determined by whether 

the roots of θ(L) = 0 are outside the unit circle (stationary) or on it 

(nonstationary).  

 θ(L) is an order-p polynomial in the lag operator 
2

1 21 .p
pL L L−θ −θ − −θ   

 We can factor β(L) as 

( )( ) ( )2
1 2 1 21 1 1 1 ,p

p pL L L L L L−θ −θ − −θ = −φ −φ −φ   where 

1 2

1 1 1
, , ,

pφ φ φ
  are the roots of θ(L).  

 We rule out allowing any of the roots to be inside the unit circle because 

that would imply explosive behavior of y, so we assume |φj| ≤ 1.  
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 Suppose that there are k ≤ p roots that are equal to one (k unit roots) and 

p – k roots that are greater than one (outside the unit circle in the complex 

plane). We can then write ( ) ( ) ( )( )11 1 1 ,
k

p kL L L L−θ = −φ −φ −  where 

we number the roots so that the first p – k are greater than one. 

 Let ( ) ( )
( )

( ) ( )11 1 .
1

p kk

L
L L L

L
−

θ
γ = = − φ − φ

−
  Then 

( ) ( )( ) ( )( )1 .
k k

t t t tL y L L y L y vθ = γ − = γ Δ = α +   

 Because γ(L) has all of its roots outside the unit circle, the series Δkyt is 

stationary. 

 We introduce the terminology “integrated of order k” (or I(k)) to 

describe a series that has k unit roots and that is stationary after being 

differenced k times. 

• The term “integrated” should be thought of as the inverse of 

“differenced” in much that same way that integrals are the 

inverse of differentiation. 

o The “integration” operator ( ) 1
1 L

−−  accumulates a series 

in the same way that the difference operator 1 – L turns 

the series into changes. 

o Integrating the first differences of a series reconstructs the 

original series: ( ) ( ) ( )1 1
1 1 1t t tL y L L y y

− −− Δ = − − =  

• If y is stationary, it is I(0).  

• If the first difference of y is stationary but y is not, then y is I(1). 

Random walks are I(1). 

• If the first difference is nonstationary but the second difference is 

stationary, then y is I(2), etc. 

• In practice, most economic time series are I(0), I(1), or 

occasionally I(2). 

• Impacts of integrated variables in a regression 

o If y has a unit root (is integrated of order > 0), then the OLS estimates of 

coefficients of an autoregressive process will be biased downward in small 

samples. 

o Can’t test θ1 = 0 in an autoregression such as 1 1t t ty y v−= α + θ +  with usual tests 

o Distributions of t statistics are not t or close to normal 

o Spurious regression 

 Non-stationary time series can appear to be related with they are not. 

 This is exactly the kind of problem illustrated by the baseball 

attendance/Botswana GDP example 
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 Show the Granger-Newbold results/tables 

Dickey-Fuller tests for unit roots 

• Since the desirable properties of OLS (and other) estimators depend on the stationarity of 

y and x, it would be useful to have a test for a unit root. 

• The first and simplest test for unit-root nonstationarity is the Dickey-Fuller test. It 

comes in several variants depending on whether we allow a non-zero constant and/or a 

deterministic trend 

• Testing the null that y  is random walk without drift: DF test with no constant or 

trend 

o Consider the AR(1) process 1t t ty y v−= ρ +  

 The null hypothesis is that y is I(1), so H0: ρ = 1.  

 Under the null hypothesis, y follows a random walk without drift. 

 Alternative hypothesis is one-sided: H1: ρ < 1 and y is stationary AR(1) 

process 

o We can’t just run an OLS regression of this equation and test ρ = 1 with a 

conventional t test because the distribution of the t statistic is not asymptotically 

normal under the null hypothesis that y is I(1). 

o If we subtract yt – 1 from both sides, we get ( ) 1 11 ,t t t t ty y v y v− −Δ = ρ− + = γ +  with 

γ ≡ ρ – 1. 

 If the null hypothesis is true (ρ = 1 or γ = 0) then the dependent variable 

is non-stationary and the coefficient on the right is zero. 

 We can test this hypothesis with an OLS regression, but because the 

regressor is nonstationary (under the null), the t statistic will not follow 

the t or asymptotically normal distribution. Instead, it follows the Dickey-

Fuller distribution, with critical values stricter than those of the normal. 

• See Table 12.2 on p. 486 for critical values. 

 If the DF statistic is less than the (negative) critical value at our desired 

level of significance, then we reject the null hypothesis of non-stationarity and 

conclude that the variable is stationary. 

• Note that a one-tailed test (left-tailed) is appropriate here because 

γ = ρ – 1 should always be negative. Otherwise, it would imply 

ρ > 1, which is non-stationary in a way that cannot be rectified by 

differencing. 

o The intuition of the DF test relates to the mean-reversion property of stationary 

processes: 

 1 .t t ty y v−Δ = γ +  
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 If γ < 0, then when y is positive (above its zero mean) Δy will tend to be 

negative, pulling y back toward its (zero) mean. 

 If γ = 0, then there is no tendency for the change in y to be affected by 

whether y is currently above or below the mean: there is no mean 

reversion and y is nonstationary. 

• Testing the null that y is a random walk with drift: DF test with constant but no trend 

o In this case, the null hypothesis is that y follows a random walk with drift 

o Alternative hypothesis is stationarity 

o ( )
1

1 11
t t t

t t t t t

y y v

y y v y v
−

− −

= α + ρ +
Δ = α + ρ − + = α + γ +

 

o 
( )
( )

0

1

: 1 0

: 1 0

H

H

ρ = γ =

ρ < γ <
 

o Very similar to DF test without a constant but critical values are different (See 

Table 12.2) 

• Testing the null that y is “trend stationary”: DF test with constant and trend 

o In this case, the null is that the deviations of y from a deterministic trend are a 

random walk  

o Alternative is that these deviations are stationary 

o 
( )

1

1 11
t t t

t t t t t

y t y v

y t y v t y v
−

− −

= α + λ + ρ +
Δ = α + λ + ρ − + = α + λ + γ +

 

o Note that under the alternative hypothesis, y is nonstationary (due to the 

deterministic trend) unless λ = 0. 

• Is v serially correlated? 

o Probably, and the properties of the DF test statistic assume that it is not. 

o By adding some lags of Δy on the RHS we can usually eliminate the serial 

correlation of the error. 

o ( ) 1 1 11t t t p t p ty y a y a y v− − −Δ = α+ ρ− + Δ + + Δ +  is the model for the Augmented 

Dickey-Fuller (ADF) test, which is similar but has a different distribution that 

depends on p. 

o Stata does DF and ADF tests with the dfuller command, using the lags(#) option 

to add lagged differences. 

o An alternative to the ADF test is to use Newey-West HAC robust standard errors 

in the original DF equation rather than adding lagged differences to eliminate 

serial correlation of e. This is the Phillips-Peron test: pperron in Stata. 

• Nonstationary vs. borderline stationary series 

o 1t t tY Y u−= +  is a nonstationary random walk 

o 10.999t t tY Y u−= +  is a stationary AR(1) process 
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o They are not very different when T < ∞. 

o Show graphs of three series 

o Can we hope that our ADF test will discriminate between nonstationary and 

borderline stationary series? Probably not without longer samples than we have. 

o Since the null hypothesis is nonstationarity, a low-power test will usually fail to 

reject nonstationarity and we will tend to conclude that some highly persistent 

but stationary series are nonstationary. 

o Note: The ADF test does not prove nonstationarity; it fails to prove stationarity. 

• DF-GLS test 

o Another useful test that can have more power is the DF-GLS test, which tests the 

null hypothesis that the series is I(1) against the alternative of either I(0) or that 

the series is stationary around a deterministic trend. 

 Available for download from Stata as dfgls command. 

 DF-GLS test for H0: y is I(1) vs. H1: y is I(0) 

• Quasi difference series:  

1

1

,  for 1,

7
1 ,  for 2, 3, , .

1,  for 1,

7
,  for 2, 3, , .

t

t
t t

t

y t

z
y y t T

T

t
x

t T
T

−

=
=   − − =   

=
=  =





 

• Regress zt on x1t with no constant (because x1t is essentially a 

constant): 

0 1 .t t tz z v= δ +  

•  Calculate a “detrended” (really demeaned here) y series as 

0
ˆ .d

t ty y≡ −δ  

• Apply the DF test to the detrended yd series with corrected critical 

values (S&W Table 16.1 provide critical values). 

 DF-GLS test for H0: y is I(1) vs. H1: y is stationary around deterministic 

trend 
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• Quasi-difference series: 

( )

1

1

2

,  for 1,

13.5
1 ,  for 2, 3, ,

1,  for 1,

13.5
,  for 2, 3, ,

1,  for 1,

13.5
1 1 ,  for 2, 3, ,

t

t
t t

t

t

y t

z
y y t T

T

t
x

t T
T

t

x
t t t T

T

−

=
=   − − =   

=
=  =

=
=   − − − =   







 

• Run “trend” regression 

0 1 1 2t t t tz x x v= δ + δ +  

• Calculate detrended y as ( )0 1
ˆ ˆd

t ty y t≡ − δ + δ  

• Perform DF test on 
d
ty  using critical values from S&W’s Table 

16.1. 

 Stock and Watson argue that this test has considerably more power to 

distinguish borderline stationary series from non-stationary series. 

Cointegration 

• It is possible for two integrated series to “move together” in a nonstationary way, for 

example, so that their difference (or any other linear combination) is stationary. Such 

series follow a common stochastic trend. These series are said to be cointegrated. 

o Stationarity is like a rubber band pulling a series back to the fixed mean. 

o Cointegration is like a rubber band pulling the two series back to (a fixed 

relationship with) each other, even though both series are not pulled back to a 

fixed mean. 

• If y and x are both integrated, we cannot rely on OLS standard errors or t statistics. By 

differencing, we can avoid spurious regressions: 

o If 1 2t t ty x e= β +β +  then .t t ty x eΔ = Δ + Δ   

 Note the absence of a constant term in the differenced equation: the 

constant cancels out. 

 If a constant were to be in the differenced equation, that would 

correspond to a linear trend in the levels equation. 

 Δe is stationary as long as e is I(0) or I(1) 

o The differenced equation has no “history.” Is e stationary or nonstationary? 

 Suppose that e is I(1). 



~ 129 ~ 

 

• This means that the difference 1 2t t te y x= −β −β  is not mean-

reverting and there is no long-run tendency for y to stay in the 

fixed relationship with x. 

o No cointegration between y and x. 

• Δe is I(0). 

• “Bygones are bygones:” if yt is high (relative to xt) due to a large 

positive et, then there is no tendency for y to come back to x after 

t. 

• Estimation of differenced equation is appropriate. 

 Now suppose that e is I(0).  

• That means that the levels of y and x tend to stay close to the 

relationship given by the equation. 

• Suppose that there is a large positive et that puts yt above its long-

run equilibrium level in relation to xt. 

• With stationary e, we expect the level of y to return to the long-

run relationship with x over time: stationarity of e implies that 

corr(et, et + s) → 0 as s → ∞. 

• Thus, future values of Δy should tend to be smaller (less positive 

or more negative) than those predicted by Δx in order to close the 

gap. In terms of the error terms, a large positive et should be 

followed by negative Δet values to return e to zero if e is stationary. 

o This is the situation where y and x are cointegrated. 

• This is not reflected in the differenced equation, which says that 

“bygones are bygones” and future values of Δy are only related to 

the future Δx values—there is no tendency to eliminate the gap 

that opened up at t. 

o In the cointegrated case  

 If we estimate the regression in differenced form we are missing the 

“history” of knowing how y will be pulled back into its long-run 

relationship with x. 

 If we estimate in levels, our test statistics are unreliable because the 

variables (though not the error term) are nonstationary. 

• The appropriate model for the cointegrated case is the error-correction model of Hendry 

and Sargan. 

o ECM consists of two equations: 

 Long-run (cointegrating) equation: 1 2t t ty x e= β +β + , where (for the true 

values of β1 and β2) e is I(0) 
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 Short-run (ECM) adjustment equation: 

( )1 1 2 1 1 1 0t t t t p t p t q t q ty y x y y x x v− − − − −Δ = −α −β −β +θ Δ + +θ Δ +δ Δ + +δ Δ + 
 

o Note the presence of the error-correction term with coefficient –α in the ECM 

equation.  

 This term reflects the distance that yt – 1 is from its long-run relationship to 

xt – 1. 

 If –α < 0, then yt – 1 above its long-run level will cause Δyt to be negative 

(other factors held constant), pulling y back toward its long-run 

relationship with x. 

o There is no constant term in the differenced regression (though many people 

include one) because the constant term in the x, y relationship cancels out in the 

differencing process. 

o Because both y and x are I(1), their first differences are I(0). Because they are 

cointegrated with cointegrating vector β1, β2, the difference in the error-

correction term is also I(0).  

 This term would not be stationary if they weren’t cointegrated and the 

ECM regression would be invalid. 

• Estimation of cointegrated models 

o The ECM equation can be estimated by OLS without undue difficulty because 

all the variables are stationary. 

o The cointegrating regression can be estimated super-consistently by OLS 

(although the estimates will be non-normal and the standard errors will be 

invalid). 

o HGL suggest estimating both equations together by nonlinear least squares 

o Stock and Watson recommend an alternative “dynamic OLS” estimator for the 

cointegration equation: 

 1 2

p

t t j t j t
j p

y x x v−
=−

= β + β + φ Δ +  

 This can be estimated by OLS and the HAC-robust standard errors are 

valid for β. 

 Don’t include the δ terms in the error-correction term in the ECM 

regression, which remains 1 1 2 1
ˆ ˆ

t ty x− −−β −β . 

o Normally, we would have to correct the standard errors of the ECM for the fact 

that the error-correction variable is calculated based on estimated β rather than 

known with certainty.  

 However, because the estimators of β are “super-consistent” in the 

cointegration case, they converge asymptotically faster to the true β than 
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the δ and θ estimates and can be treated as if they were true parameter 

values instead of estimates. 

• Multivariate cointegration 

o The concept of cointegration extends to multiple variables 

o With more than two variables, there can be more than one cointegrating 

relationship (vector) 

 Interest rates on bonds issued by Oregon, Washington, Idaho might be 

related by rO = rW = rI. Two equal signs means two cointegrating 

relationships. 

o Vector error-correction models (VECM) allow for the estimation of error-

correction regressions with multiple cointegrating vectors. We will study these 

soon. 

 Stata does this using the vec command. 

• Testing for cointegration 

o The earliest test for cointegration is Engle and Granger’s extension of the ADF 

test: 

 Estimate the cointegrating regression by OLS. 

 Test the residuals with an ADF test, using revised critical values as in 

S&W’s Table 16.2. 

o Other, more popular tests include the Johansen-Juselius test, which generalizes 

easily to multiple variables and multiple cointegrating relationships. 

Vector autoregression  

• VAR was developed in the macroeconomics literature as an attempt to characterize the 

joint time-series of a set (vector) of variables without making the restrictive (and perhaps 

false) assumptions that would allow the identification of structural dynamic models. 

• VAR can be thought of as a reduced-form representation of the joint evolution of the set 

of variables. 

o However, in order to use the VAR for conditional forecasting, we have to make 

assumptions about the causal structure of the variables in the model. 

o The need for identifying restrictions gets pushed from the estimation to the 

interpretation phase of the model. 

• Two-variable VAR(p) for x and y (which should be stationary, so they might be 

differences): 

o 0 1 1 1 1

0 1 1 1 1

y
t y y t yp t p y t yp t p t

x
t x x t xp t p x t xp t p t

y y y x x v

x y y x x v

− − − −

− − − −

= β + β + + β + γ + + γ +

= β + β + + β + γ + + γ +

 

 
 

o Note absence of current values of the variables on the RHS of each equation. 

 This reflects uncertainty about whether the correlation between yt and xt 

is because x causes y or because y causes x. 
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 Correlation between yt and xt will mean that the two error terms are 

correlated with one another, however. (This is assumed not to happen in 

the simplified HGL example, but in practice they are always correlated.) 

This means that we can’t think of y
tv  as a “pure shock to y” and x

tv  as a 

pure shock to x: one of them will have to be responding to the other in 

order for them to be correlated. 

• Estimate by OLS—SUR is identical because regressors are same in each equation 

• How many variables? 

o More adds p coefficients to each equation 

o Generally keep the system small (6 variables is large) 

• How many lags? 

o Can use the AIC or Schwartz criterion on the system as a whole to evaluate: 

( ) ( ) ( ) lnˆln det 1
,u

T
SC p k kp

T
 = Σ + + 

 where k is the number of 

variables/equations and p is the number of lags. The determinant is of the 

estimated covariance matrix of the errors, calculated as the sample variances and 

covariances of the residuals. 

• What can we use VARs for? 

o Granger causality tests 

 The setup is natural for bidirectional (or multidirectional) Granger 

causality tests. 

o Forecasting 

 VAR is a simple generalization of predicting a single variable based on its 

own lags: we are predicting a vector of variables based on lags of all 

variables. 

 We can do forecasting without any assumptions about the underlying 

structural equations of the model. No identification issues for forecasting. 

 To do multi-period forecasts, we just plug in the predicted values for 

future years and generate longer-term forecasts recursively. 

• Identification in VARs: Impulse-response functions and variance decompositions 

o In order to use VARs for simulation of shocks, we need to be able to identify the 

shocks. 

 Is vx a pure shock to x with no effect on y? 

 Is vy a pure shock to y with no effect on x? 

 Both cannot generally be true if the two v terms are correlated. 

 Two possible interpretations (identifying restrictions) 

• vx is a pure x shock; some part of vy is a response to vx  and the 

remainder of vy is a pure y  shock. 

o x is “first” and y responds to x in the current period. yt 

does not affect xt. 
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• vy is a pure y shock; some part of vx is a response to vy  and the 

remainder of vx is a pure x  shock. 

o Opposite assumption about contemporaneous causality. 

 If we don’t make one of these assumptions, then shocks are not identified 

and we can’t do simulations. (Can still forecast and do Granger causality, 

though.) 

o If we make one or the other identifying restriction, then we can conduct 

simulations of the effects of shocks to x or y. Suppose that we assume that x 

affects y contemporaneously, but not the other way around. 

 Shock of one unit (we often use one standard deviation instead) to vx 

causes a one-unit increase in xt and a change in yt that depends on the 

covariance between vx and vy, which we can estimate. 

• In t + 1, the changes to xt and yt will affect xt + 1 and yt + 1 according 

to the coefficients βx1, βy1, γx1, and γy1. (We assume that all v terms 

are zero after t.) 

• Then in t + 2, the changes to xt, yt, xt + 1, and yt + 1 will affect the 

values in t + 2. This process feeds forward indefinitely. 

• The sequence t s
x
t

x
v

+Δ
Δ

 and t s
x
t

y
v

+Δ
Δ

 for s = 0, 1, 2, … is called the 

impulse-response function with respect to a shock to x. 

 We can analyze a one-unit shock to y in the same basic way, except that 

by assumption y
tv  has no effect on x

tv  or xt. This gives the IRF with 

respect to a shock to y. 

 Note that the IRF will vary depending on our choice of identifying 

condition. If we assume that yt affects xt but not vice versa (rather than 

the other way around), then we get a different IRF. 

o The identification and IRF calculation is similar for more than two variables. 

With k > 2, the most common identification scheme is identification by 

“ordering assumption.” We pick one variable that can affect all the others 

contemporaneously, but is not immediately affected by any others. Then we pick 

the second variable that is affected only by the first in the immediate period but 

can affect all but the first. 

 This amounts to an ordering where variables can have a 

contemporaneous effect only on variable below them in the list. 

 (Of course, all variable in the model are assumed to affect all others with 

a one-period lag.) 

o The other common “output” from a VAR is the variance decomposition. This 

asks the same question about how the various shocks affect the various variables, 

but from the other direction. 
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 “How much of the variance in yt + s is due to shocks to xt, shocks to yt and 

shocks to other variables?” 

 The variance decomposition breaks down the variance of yt + s into the 

shares attributed to each of the shocks. 

 We won’t talk about the formulas used to calculate these. 

o The Enders text on the reading list provides more details. 

Vector error-correction models 

• What if x and y are I(1) variables that are cointegrated? 

o We can do a two-variable (vector) error-correction model 

• With two variables, there can be only one cointegrating relationship linking the long-run 

paths of the two variables together. 

o With m variables, there can be m – 1 cointegrating relationships, but we won’t 

worry about this. 

• We can use OLS to estimate the cointegrating regression 0 1t t ty x e= β + β +  and calculate 

the residuals t̂e , which are I(0) if x and y are cointegrated. 

• We can then estimate a VAR in the differences of x and y, using the residuals as 

cointegration terms on the right-hand side of each equation. 

• For example: 

0 1 1 1 1 1

0 1 1 1 1 1

ˆ ... ...

ˆ ... ...

y
t y y t y t yp t p y t yp t p t

x
t x x t x t xp t p x t xp t p t

y e y y x x v

x e y y x x v

− − − − −

− − − − −

Δ = β + α + β Δ + + β Δ + γ Δ + + γ +

Δ = β + α + β Δ + + β Δ + γ Δ + + γ +
 

Time-varying volatility: Autoregressive conditional 

heteroskedasticity (ARCH) models 

• Financial economists have noted that volatility in asset prices seems to be autocorrelated: 

if there are highly volatile returns on one day, then it is likely that returns will have high 

volatility on subsequent days as well. This is called volatility clustering. 

• Does “high volatility” (large error variance) tend to persist over time? 

o Heteroskedasticity in a time-series context means that the error variance depends 

on t: 2
tσ  

o One possibility would be to model 2
tσ  as a deterministic function of t (a trend?) or 

of other time-dependent variables 

o We can also model time-dependent error variance as a random variable 

• ARCH models error variance as an AR or MA process: This is a particular pattern of 

heteroskedasticity where there are positive or negative shocks to the error variance each 

period and where shocks tend to persist 
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• Engle modeled this by making the variance of the error term depend on the square of 

recent error terms: 

o ( )
1 2 1 1 1
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t t
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o This error structure is the ARCH(p) model. 

 Note that the conditional heteroskedasticity here is really moving average 

rather than autoregressive because there are no lagged σ2 terms. 

o (HGL leave out the lagged y and x terms to look only at a single stationary 

variable) 

• A now-more-common generalization is the GARCH(p, q) model: 

o 2 2 2 2 2
0 1 1 1 1t t p t p t q t qe e− − − −σ = α +α + +α +φ σ + +φ σ   

• ARCH and GARCH models (and a variety of other variants) are estimated by ML. 

• In Stata, the arch command estimates both ARCH and GARCH models, as well as other 

variants. 

 


