Economics 314 Spring 2010 Project #2 Assignment Due: 9am, Wednesday, February 10

Partner assignments

<table>
<thead>
<tr>
<th>Axelle Bell</th>
<th>Samantha Bruce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrijan Rimal</td>
<td>Mark Hintz</td>
</tr>
<tr>
<td>Niall Murphy</td>
<td>Antonio Friedman</td>
</tr>
<tr>
<td>Zakir Hakim</td>
<td>Nisma Elias</td>
</tr>
<tr>
<td>Nicholas Wilson</td>
<td>Ximeng Zhang</td>
</tr>
<tr>
<td>Gabriel Korzeniewicz</td>
<td>Suraj Pant</td>
</tr>
</tbody>
</table>

Each team should submit a single paper. I strongly encourage you to work as a team in solving the problems. At a very minimum, both partners must understand everything that’s on the paper when you turn it in. You are free to interact with other teams and to seek advice from me as you work on the problems, especially on the mathematical solutions. The idea of problem sets is to learn from them, not to test whether you can do them perfectly without help.

Problems

1. Marginal products in terms of intensive production function. In the Solow growth model, we write the aggregate production function as \(Y = F(K, AL) \), and the intensive production function as \(y = f(k) \), where \(y \equiv \frac{Y}{AL} \), \(k \equiv \frac{K}{AL} \), and \(f(\bullet) = F(\bullet,1) \). Assume constant returns to scale and the usual properties for the partial derivatives of \(F \).

 a. Show that the marginal products of capital and labor are \(\frac{\partial Y}{\partial K} = f'(k) \) and \(\frac{\partial Y}{\partial L} = A \left[f(k) - kf''(k) \right] \).

 b. Show that the marginal product of capital is decreasing in \(k \) and the marginal product of labor is increasing in \(k \).

 c. In competitive equilibrium, each unit of capital and labor will be paid its marginal product. Based on part a, how do the real rental rate of a unit of capital (\(r + \delta = MPK \)) and the real wage on labor (\(w = MPL \)) behave on a Solow steady-state growth path? Does this seem realistic given the long-run (say, since 1800) behavior of the U.S. economy?

 d. How do total earnings of capital (\(K \times MPK \)) and total earnings of labor (\(L \times MPL \)) behave along the growth path? Given the behavior of total output, what will happen to capital’s share (capital earnings divided by total output) and labor’s share in steady-state growth?

2. Work Romer’s problem 1.3.

 • Addition to each part: “Sketch the new steady-state growth path of \(\ln(Y) \) and the path that \(\ln(Y) \) will follow as it converges to its new steady-state path. Explain in words what is happening at the moment of the change and afterwards.”

 • Be careful on part (c): do you know if \(k < 1 \) or \(k > 1 \)?
3. Work Romer’s problem 1.4.
 - Assume that the new workers bring no capital with them and that their arrival has no effect on A.
 - Addition to part (a): “What happens to total output Y at the time of the jump? Why?”
 - Addition to part (c): “Is the total level of output on the new balanced growth path higher, lower, or the same as it would have been if there had been no new workers? Why?”

 - In part (b), be sure that you think about both the level and the slope of the growth path of Y.

5. Work Romer’s problem 1.8.
 - Hint: Romer’s equation (1.27) can be useful for this problem.