Week 8: Unemployment: Introduction

Generic Efficiency-Wage Models

- Basic idea of efficiency wages: Raising a worker's wage makes her more productive
 - More effort
 - To keep job?
 - Why doesn't firm make effort a condition of employment and pay lower wages?
 - o Improved applicant pool
 - o Happier workers might be more productive
 - o Higher wage might increase health (in developing countries)
- Basic models
 - o Simple model of effort: e = e(w)
 - o More complex model: $e = e(w, w_a, u)$
 - Firm must offer a higher wage than other firms (w_a) in order to get higher effort, for given level of unemployment rate
 - Could be simplified to $e = e(w w_a, u)$
- Productivity effect
 - $\circ \quad Y = F(eL)$
 - \circ $\Pi = F(eL) wL$
 - Мах П:

O Solve together to get: $\frac{\partial e}{\partial w} \frac{w}{e} = 1$: Set wage at level where elasticity of effort with respect to wage is unity

o Then
$$F'(eL) = \frac{w}{e}$$
 determines L

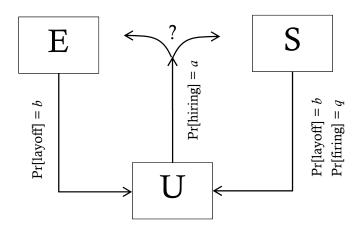
- Increase in MPL would lead to higher L but not higher w
 - This is strongly consistent with data in a way that the RBC model does not explain
 - \circ However, if w_a or u changed, then the optimal wage would respond
 - This is one justification for the "wage adjustment equation" that Romer uses from time to time in place of assuming that the wage clears the labor market
- Can all firms pay an efficiency wage?
 - o If all firms are symmetric, then all end up paying the same wage, so no individual firm pays a wage higher than others ($w = w_a$)

 But driving up wage leads to a persistent excess supply of labor and unemployment, which keeps workers working hard out of fear of becoming unemployed: "Unemployment as a worker-discipline device"

Shapiro-Stiglitz Model

Basic setup

- Shapiro-Stiglitz model tries to get inside the *e* function to model workers' decisions about how hard to work
 - o Application of dynamic programming: mathematical technique that macroeconomics use a lot
- A worker can be in any of three states:
 - o E means she is working hard
 - o S means she is shirking
 - o U means she is unemployed
- We analyze movement between states in continuous time
 - Hazard rate = instantaneous probability (per year) of moving into or out of a state



- Employed worker chooses whether to be in *E* or *S*
- o *q* is the penalty for shirking in terms of a probability of getting caught and fired
 - In world of perfect monitoring of worker performance, firms can fire workers immediately and $q \to \infty$
 - If it is totally impossible for firms to monitor workers, then q = 0
- Instantaneous probabilities of moving:
 - Movement can happen at any moment, but probabilities are still expressed in "per period" rate
 - o Intuition based on frequency of layoff opportunities:

- Suppose the period is one year
- If one can only be laid off at end of year, then probability of still being employed after a year is $(1-b)^1$
- If one can be laid off at middle or end of year, then $\left(1-\frac{1}{2}b\right)^2$
- If one can be laid off at end of any quarter: $(1-\frac{1}{4}b)^4$
- If at end of any month: $\left(1 \frac{1}{12}b\right)^{12}$
- If any day: $\left(1 \frac{1}{365}b\right)^{365}$
- As opportunities for layoffs become continuous: $\lim_{n\to\infty} (1-\frac{1}{n}b)^n = e^{-b}$
- o Probability that someone starting in E is still in E after Δt is $e^{-b\Delta t}$
- Probability that someone starting in S is still in S after Δt is $e^{-(b+q)\Delta t}$
- Probability that someone starting in *U* is still in *U* after Δt is $e^{-a\Delta t}$
- Working utility: $U = \int_0^\infty e^{-\rho t} u(t) dt$, with $u(t) = w(t) \overline{e}$ if employed and working, u(t) = w(t) if employed and shirking, and u(t) = 0 if unemployed
- Firm's profit with L(t) working hard and S(t) shirking is $\Pi(t) = F(\overline{e}L(t)) w(t) \lceil L(t) + S(t) \rceil$

Dynamic programming

• Fundamental underlying equation of dynamic programming is the Bellman equation, which relates to the lifetime expected utility of someone who is currently in state *i*:

$$V_i(0) = \lim_{\Delta t \to 0} V_i(\Delta t) = \lim_{\Delta t \to 0} \left\{ \int_{t=0}^{\Delta t} u(t \mid \text{state at } 0 = i) dt + e^{-\rho \Delta t} E[V(\Delta t \mid \text{state at } 0 = i)] \right\}$$

• For state E, the Bellman equation is

$$\begin{split} V_{E}\left(\Delta t\right) &= \int_{t=0}^{\Delta t} e^{-\rho t} \left[e^{-bt} \left(w - \overline{e} \right) + \left(1 - e^{-\rho t} \right) (0) \right] dt \\ &+ e^{-\rho \Delta t} \left[e^{-b \Delta t} V_{E}\left(\Delta t\right) + \left(1 - e^{-b \Delta t} \right) V_{U}\left(\Delta t\right) \right] \end{split}$$

- o Interpretation of expressions:
 - Integral is utility gained over t between time 0 and Δt
 - Bracketed sum is expected utility at t given probabilities of being employed and unemployed
 - Discount factor in front
 - o e^{-bt} is probability that worker is still E at t given E at 0
 - o $(w \overline{e})$ is utility gained at each moment in state E
 - o $(1-e^{-bt})$ is probability of having been laid off before t
 - o (0) is the utility obtained at t if unemployed (laid off)

 Discount factor in front of second bracketed term discounts for period 0 to Δt

- Bracketed term is expected value of utility over rest of life given *E* at time 0:
 - o $e^{-b\Delta t}$ is probability still employed at Δt
 - o $V_E(\Delta t)$ is discounted rest-of-life value of utility at time Δt if still in state E
 - o $\left(1-e^{-b\Delta t}\right)$ is probability that worker has moved to U by Δt
 - o $V_U(\Delta t)$ is discounted rest-of-life value of utility at time Δt if in state U
- o Evaluating the definite integral:

$$\begin{split} \int_{t=0}^{\Delta t} e^{-(\rho+b)t} \left(w - \overline{e} \right) dt &= \left[-\frac{\left(w - \overline{e} \right)}{\rho + b} e^{-(\rho+b)\Delta t} \right] - \left[-\frac{\left(w - \overline{e} \right)}{\rho + b} e^{-(\rho+b)0} \right] \\ &= \left[-\frac{w - \overline{e}}{\rho + b} e^{-(\rho+b)\Delta t} \right] + \frac{w - \overline{e}}{\rho + b} = \left(1 - e^{-(\rho+b)\Delta t} \right) \frac{w - \overline{e}}{\rho + b} \end{split}$$

Substituting into Bellman equation:

$$V_{E}\left(\Delta t\right) = \frac{w - \overline{e}}{\rho + b} \left(1 - e^{-(\rho + b)\Delta t}\right) + e^{\rho \Delta t} \left[e^{-b\Delta t}V_{E}\left(\Delta t\right) + \left(1 - e^{-b\Delta t}\right)V_{U}\left(\Delta t\right)\right]$$

o Bringing the V_E terms to the left-hand side:

$$\begin{split} &V_{E}\left(\Delta t\right)\!\left(1-e^{-(\rho+b)\Delta t}\right)\!=\!\frac{w-\overline{e}}{\rho+b}\!\left(1-e^{-(\rho+b)\Delta t}\right)\!+e^{\rho\Delta t}\left(1-e^{-b\Delta t}\right)\!V_{U}\left(\Delta t\right)\\ &V_{E}\left(\Delta t\right)\!=\!\frac{w-\overline{e}}{\rho+b}\!+\!\frac{e^{-\rho\Delta t}\left(1-e^{-b\Delta t}\right)}{1-e^{-(\rho+b)\Delta t}}\!V_{U}\left(\Delta t\right) \end{split}$$

- O Taking the limit as $\Delta t \rightarrow 0$, both the numerator and denominator of the expression in front of V_U go to zero.
 - Applying L'Hôpital's Rule, we can show that

$$\lim_{\Delta t \to 0} \frac{e^{-\rho \Delta t} \left(1 - e^{-b \Delta t}\right)}{1 - e^{-(\rho + b)\Delta t}} = \lim_{\Delta t \to 0} \frac{-\rho e^{-\rho \Delta t} - \left(-\rho - b\right) e^{-(\rho + b)\Delta t}}{\left(\rho + b\right) e^{-(\rho + b)\Delta t}} = \frac{b}{\rho + b}$$

o Thus,
$$V_E = \frac{w - \overline{e} + bV_U}{\rho + b}$$
, or
$$(\rho + b)V_E = (w - \overline{e}) + bV_U$$
$$\rho V_E = (w - \overline{e}) + b(V_U - V_E)$$

- o This last equation has a useful interpretation that we will apply to get the values of the other states without all the math:
 - The left-hand side is the "utility return on being in state *E*"
 - This is the discount rate ρ times that capital value of being in state E

- Analogous to multiplying an interest rate (of return) times the capital value of an asset to get an annual flow of returns
- The first term on the right is the "dividend" earned while in state E
 - Each instant that the individual is in E he or she gets $w \overline{e}$
- The last term on the right is the "expected capital gain" from being in state E
 - Probability of changing state is b
 - Change in capital value if state is changed is $V_U V_E < 0$
 - Expected change in value is the product of the probability of changing state times the change in value if you do change state
- Can apply the "utility return" method to get V_S and V_U (or you can do the lengthy derivation if you want):
 - $\circ \quad \rho V_S = w + (b + q)(V_U V_S)$
 - o $\rho V_U = 0 + a (V_E V_U)$, assuming that the individual works rather than shirks with hired.
 - (It doesn't matter, because we are going to set $V_E = V_S$ as a condition for equilibrium anyway.)
- Summarizing the key relationships:

$$\rho V_E = (w - \overline{e}) + b(V_U - V_E)$$

$$\rho V_S = w + (b + q)(V_U - V_S)$$

$$\rho V_U = a(V_E - V_U)$$

Decision-making and equilibrium

- No shirking
 - o Firm will always pay a wage high enough to keep workers from shirking, because if workers shirk then the firm incurs wage cost but gets no output
 - O Assume that workers work if and only if $V_E \ge V_S$, in other words, they work if the values are equal
 - O Setting $\rho V_E = \rho V_S$, $w \overline{e} b(V_E V_U) = w (b + q)(V_E V_U)$ $V_E V_U = \frac{\overline{e}}{q} > 0.$
 - Firms set wage high enough that working is more desirable than being unemployed, so workers have something to lose if they are fired or laid off

o Solving for the wage from the ρV_E equation:

$$w = \overline{e} + \rho V_E + b(V_E - V_U)$$

$$= \overline{e} + (b + \rho)(V_E - V_U) + \rho V_U$$

$$= \overline{e} + (b + \rho + a)(V_E - V_U), \text{ because } \rho V_U = a(V_E - V_U)$$

$$w = \overline{e} + (a + b + \rho)\frac{\overline{e}}{q}.$$

• Wage that firms must set to assure no shirking depends on disutility of working hard (\overline{e}), probability of being caught shirking (q), probability of being rehired if unemployed (a), and b and ρ .

• Equilibrium

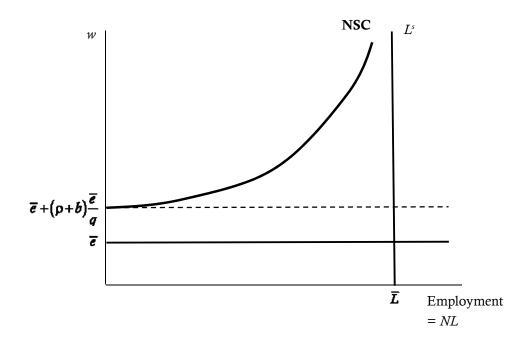
- In steady state with constant unemployment rate, flow of workers from E to
 U must balance flow from U to E:
 - If there are *N* firms and each one hires *L* workers, then total employment is *NL*
 - Suppose that the total labor force is fixed at \bar{L}
 - Number unemployed is $\overline{L} NL$
 - Balancing flows are $bNL = a(\bar{L} NL)$, so

$$a=\frac{bNL}{\overline{L}-NL}$$
 and
$$a+b=\frac{\overline{L}}{\overline{L}-NL}b=\frac{1}{u}b$$
, where u is the unemployment rate

o Substituting into the no-shirking wage,

$$w = \overline{e} + \left(\rho + \frac{\overline{L}}{\overline{L} - NL}b\right)\frac{\overline{e}}{q}$$
 is the **no-shirking condition**

- Firms must pay a wage at least equal to this level in order to avoid shirking
- Can be written as $w = \alpha + \beta \frac{1}{u}$, which is a rectangular hyperbola in the unemployment rate
- Graphing w against NL gives:



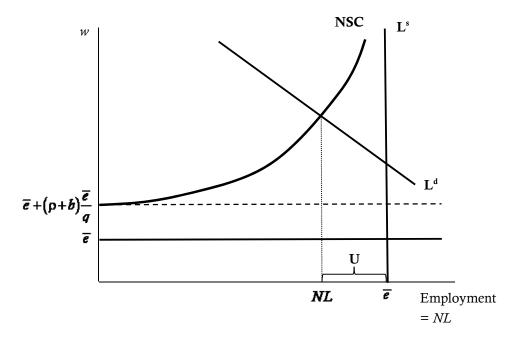
o Effects of parameters on NSC:

$$\overline{e} \uparrow \Rightarrow \text{NSC} \uparrow$$
 $\overline{L} \uparrow \Rightarrow \text{NSC} \rightarrow$
 $b \uparrow \Rightarrow \text{NSC} \searrow$
 $q \uparrow \Rightarrow \text{NSC} \searrow$

- $q \to \infty$ means that shirkers get caught immediately and NSC becomes backward L at \overline{e} and \overline{L} :
 - Workers all work if wage is greater than or equal to \overline{e}
- With finite q, the NSC is like a supply curve for labor, telling firms how much they must (collectively) pay in order to get a certain number of workers to work hard

• Labor demand

- o For individual firm, $\Pi = F[\overline{e}L] wL$
- o Profit-maximization: $\frac{\partial \Pi}{\partial L} = \overline{e}F'[\overline{e}L] w = 0$, given the w on the NSC
- O Labor-demand curve for each of N firms comes from $F'[\overline{e}L] = \frac{w}{\overline{e}}$, which is declining in L, so labor demand curve slopes downward as usual
 - Having to offer a higher efficiency wage means it is only profitable to hire a smaller number of workers



- If firms had perfect information about shirkers so $q = \infty$, then equilibrium occurs at full employment, where $L^d = L^s$
- With monitoring costs, equilibrium occurs where $L^d = NSC$ and unemployment is the gap $\overline{L} NL$
- Title of paper: "Unemployment as a worker discipline device"
- No firm pays higher wage than any other, so efficiency wage in aggregate means working hard because getting fired mean being unemployed (not going to a lowerwage firm)

Issues

Bonding

- o How about having employee post a bond a hiring that is forfeited if he shirks?
- This would allow firms to hire the entire labor force at the equilibrium wage (no unemployment)
- o Enforcement might be difficult: firm has incentive to claim shirking and seize bond, even if worker is not shirking
- o Workers might not be sufficiently liquid to pay up front
- o We see this to some extent in structure of labor compensation
 - Delayed vesting of retirement plans: Some worker benefits are not earned until worker has completed a certain number of years
 - Rising wage scale over time
 - More senior workers may not be more productive, but by offering higher wages to them it encourages workers to avoid firing (and quitting)

Costs of monitoring

Search and Matching Model 121

- One can imagine a model in which firms choose between paying an efficiency wage and incurring costs of monitoring more closely
- A decline in monitoring costs (due to better surveillance techniques, perhaps)
 would lower wage and increase employment
 - Could this help explain blue-collar wage stagnation since 1980s?

Search and Matching Model

Basic model setup

- Workers and jobs are heterogeneous
 - Matching is a time-consuming process involving matching vacant job with unemployed worker
- Workers can either be employed/working or unemployed/searching:
 - There is mass one of workers with fraction E employed and U unemployed: E + U = 1
- When a worker is employed, he or she produces output at constant flow rate y and earns a wage of w(t)
- When a worker is unemployed, he receives a benefit of b > 0 (either unemployment benefit payments or leisure utility, or both)
- Firms have a pool of jobs, some of which (*F*) are filled and some of which (*V*) are vacant
- A firm incurs a constant flow cost *c* < *y* of maintaining a job, whether it is vacant or filled
 - This is a simplification, but think about all of the overhead personnel costs of keeping track of employees and the search costs of hiring for a new one
 - We just assume that they are the same (for simplicity)
 - O $\Pi(t) = y w(t) c$ for each filled job $\Pi(t) = -c$ for each vacant job
 - Vacancies/jobs are costless to create (but expensive to maintain)
- Both workers and firms have a discount rate of r
- Matching function matches members of the pool of unemployed workers with members of the pool of vacant jobs:

$$M(t) = M[U(t), V(t)]$$
, with $M_U > 0$, $M_V > 0$

• Employment matches end (through retirement, firm contraction, etc.) at a constant rate λ , so

$$\dot{E}(t) = M [U(t), V(t)] - \lambda E(t)$$

Matching function

- Matching function is like a production function, but it need not have constant returns to scale:
 - o Thick-market effects may make it easier for workers/jobs to find one another if there are many out there: increasing returns to scale
 - Congestion effects might make it more difficult to find one another if jobsearch resources are congested: decreasing returns to scale
- We assume CRTS and Cobb-Douglas marching function:

 $M[U(t),V(t)] = k[U(t)]^{1-\gamma}[V(t)]^{\gamma}$, with k being an index of the efficiency of job search

- O The **job-finding rate** a(t) (same as Shapiro-Stiglitz a) is the rate at which unemployed workers find jobs: M[U(t),V(t)]/U(t)
 - With CRTS:

$$a(t) = m[\theta(t)], \text{ with } \theta(t) \equiv \frac{V(t)}{U(t)} \text{ and } m[\theta(t)] \equiv M(1, \theta(t))$$

- θ is an indicator of labor market looseness: higher θ means more job vacancies or fewer unemployed workers, making it easier for workers to find jobs
- With Cobb-Douglas: $a(t) = m[\theta(t)] = k\theta^{\gamma}$
- The **job-filling rate** $\alpha(t)$ is the rate at which vacant jobs are filled:

$$M \lceil U(t), V(t) \rceil / V(t)$$

• With Cobb-Douglas:
$$\alpha(t) = \frac{m[\theta(t)]}{\theta(t)} = k\theta^{\gamma-1}$$

Nash bargaining

- o There is no "market wage" because each individual and job are unique
- O The wage is set to divide up the mutual gains from making the match, with share φ going to the worker and (1 φ) going to the firm
- \circ The value of ϕ will depend on institutions in the economy (and could depend on market conditions)

Decision-making

- Dynamic programming:
 - What is the value to worker of being in state E or in state U?
 - \circ What is the value to firm of having filled job F or vacant job V?
 - o Here, we consider the possibility that the economy may not always be in the steady state, so there can be a change in the value V_i over time, which adds (if positive) to the benefit of being in that state (like a capital gain)

123

• For the worker:

$$rV_{E}(t) = w(t) + \dot{V}_{E}(t) - \lambda \left[V_{E}(t) - V_{U}(t)\right]$$

$$rV_{U}(t) = b + \dot{V}_{U}(t) + a(t) \left[V_{E}(t) - V_{U}(t)\right]$$

• For the firm:

$$rV_{F}(t) = [y - w(t) - c] + \dot{V}_{F}(t) - \lambda [V_{F}(t) - V_{V}(t)]$$

$$rV_{V}(t) = -c + \dot{V}_{V}(t) + \alpha(t)[V_{F}(t) - V_{V}(t)]$$

Equilibrium conditions

- In the steady state, all of the \dot{V} terms are zero, so we will now neglect them
- Also, in steady state, both a and α are constant
- Evolution of number unemployed is $\dot{E}(t) = [U(t)]^{1-\gamma} [V(t)]^{\gamma} \lambda E(t)$ and must be zero in steady-state
- Nash bargaining:
 - O Suppose that the total gain from match is X, of which worker gets ϕX and firm gets $(1 \phi)X$

$$\circ \frac{\left(V_{E} - V_{U}\right) = \phi X}{\left(V_{F} - V_{V}\right) = \left(1 - \phi\right) X}, \text{ so } X = \frac{V_{E}\left(t\right) - V_{U}\left(t\right)}{\phi} = \frac{V_{F}\left(t\right) - V_{V}\left(t\right)}{1 - \phi}$$

$$\text{and } V_{E}\left(t\right) - V_{U}\left(t\right) = \frac{\phi}{1 - \phi} \left[V_{F}\left(t\right) - V_{V}\left(t\right)\right]$$

• Vacancies are costless to create: $V_v(t) = 0$

Solution

- Solve model in terms of E and V_V
- Subtracting V_U from V_E yields

$$r \Big[V_E(t) - V_U(t) \Big] = w(t) - b - (\lambda + a(t)) \Big[V_E(t) - V_U(t) \Big], \text{ or }$$

$$V_E - V_U = \frac{w - b}{a + \lambda + r}$$

• Doing the same to V_F and V_V gives

$$V_F - V_V = \frac{y - w}{\alpha + \lambda + r}$$

• From the Nash bargaining condition:

$$\frac{w-b}{a+\lambda+r} = \frac{\phi}{1-\phi} \frac{y-w}{\alpha+\lambda+r},$$

$$w = b + \frac{(a+\lambda+r)\phi}{\phi a + (1-\phi)\alpha+\lambda+r} (y-b)$$

- O As a benchmark example, suppose that b = 0 (no unemployment benefits), $a = \alpha$ (job-finding rate = job-filling rate), and $\phi = \frac{1}{2}$ (bargaining shares are equal)
 - In this case, $w = \frac{(a+\lambda+r)\frac{1}{2}}{a+\lambda+r}y = \frac{1}{2}y$.
 - Workers get half of their product and firms get half
- O Higher φ means workers get higher wage
- o Higher b means workers get higher wage
- o Higher a or lower α means workers get higher wage
- Value of vacancy:

$$rV_{V} = -c + \alpha [V_{F} - V_{V}]$$

$$= -c + \alpha \frac{y - w}{\alpha + \lambda + r}$$

$$= -c + \frac{(1 - \phi)\alpha}{\phi a + (1 - \phi)\alpha + \lambda + r} (y - b)$$

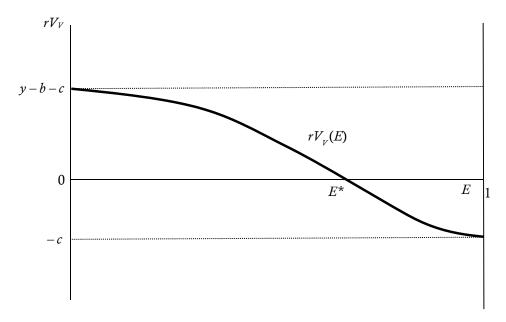
- $\dot{E} = 0 \Rightarrow M[U,V] \equiv aU \equiv a(1-E) = \lambda E$, so $a = \frac{\lambda E}{1-E}$, which is increasing in E
- $\lambda E = M(U,V) = kU^{1-\gamma}V^{\gamma} = k(1-E)^{1-\gamma}V^{\gamma}$, so $V = k^{-\frac{1}{\gamma}}(\lambda E)^{\frac{1}{\gamma}}(1-E)^{\frac{\gamma-1}{\gamma}}$ $\alpha = M/V = k^{\frac{1}{\gamma}}(\lambda E)^{\frac{\gamma-1}{\gamma}}(1-E)^{\frac{1-\gamma}{\gamma}}$

 α is decreasing in *E* because $\gamma < 1$

• Free creation of vacancies implies that $V_V = 0$ in steady state, so

$$rV_{V} = -c + \frac{(1-\phi)\alpha(E)}{\phi a(E) + (1-\phi)\alpha(E) + \lambda + r}(y-b) = 0$$

- When E = 1, $\alpha = 0$ (it takes forever to fill a vacancy because there are no unemployed workers)
 - $rV_V = -c$ because the flow of returns on vacancy are perpetually the cost of maintaining it
- When $E \to 0$, a = 0 and $\alpha \to \infty$, so big fraction approaches one and $rV_V = y (b + c)$



- Curve of rV_V as a function of E has shape shown above.
- Equilibrium occurs where value of additional vacancies is exactly zero, at E^*
- Effects of changes in parameters:

 $y \uparrow \Rightarrow rV_{\nu}$ curve shifts \uparrow

 $k \uparrow \Rightarrow rV_{\nu}$ curve shifts \nearrow

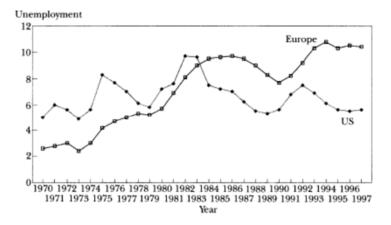
 $b \uparrow \Rightarrow rV_{\nu}$ curve shifts \downarrow

Applications

- Sectoral shifts
 - When the economy is undergoing a lot of structural shifts from one industry/region to another, *k* may fall as matching becomes harder
 - o This would raise equilibrium unemployment in the model
- Active labor-market policies
 - Scandinavian countries have had good success with policies to facilitate job matching
 - \circ This would be an increase in efficiency of matching so k increases
 - o (U.S. effectiveness not so good)

Natural Unemployment: Empirical Evidence

- Based on Nickel and Siebert's papers in 1997 JEP
- Economists have been studying the high natural unemployment rate in Europe intensively since about 1990



- There is no single, simple explanation
 - o For example, Spain and Portugal have quite similar institutions, but Spanish unemployment is twice as high
 - European institutions were similar in 1960s when unemployment was very low
- Candidates that are usually discussed
 - o Employment protection
 - Firms that can't fire won't hire
 - o Collective bargaining coverage
 - o Generous unemployment benefits
 - o Tax wedge
 - o Lack of wage flexibility
 - Is European unemployment the mirror image of US wage stagnation?
 - In U.S., low-skill wages have fallen; in Europe, low-skill employment has stagnated
 - o General lack of "flexible labor market"
 - Low churn
 - Low mobility
- Exceptions to the rule
 - Netherlands undertook flexible labor-market reforms that dropped unemployment a lot
 - o Germany is now doing better, although absorption of East increased natural rate
 - o Sweden has used active labor-market policies effectively