66 Week 5

Week 5

Aggregate Supply and Demand

What we do and do not do here

- Sketch the basic models of aggregate demand and supply without microfoundations
 - We add the foundations next week
- **Two-curve** analysis
 - Why is the supply-demand model of competition useful?
 - It describes two relationships that depend on different things
 - Together the two curves determine the variables of interest
 - o We extend that style of analysis to the macroeconomy here
 - Many examples:
 - AD/AS with output and price level
 - Expenditure and monetary variables affect AD
 - Cost and production variables affect AS
 - IS/LM with output and interest rate
 - Expenditure behavior affects IS
 - Monetary/asset conditions affect LM
 - IS/MP as alternative to IS/LM when central bank has an interestrate rule
 - Open-economy models also break down into two curves
 - Sometimes like IS and LM
 - Sometimes with ε on the vertical axis

Two sides of macroeconomy

- **Aggregate demand**: Desired expenditures (consumption, investment, net exports in open economy), monetary and fiscal policies
- Aggregate supply: Production, labor market, technology/productivity, capital stock

Two key variables

- Real GDP Y measures total output, income, and expenditures in economy (in terms of goods and services)
 - o We avoid aggregation problem by just assuming that all goods are identical
- Aggregate price level P measures cost of one unit of generic goods in terms of money
- AS/AD can be done in terms of levels or of changes (growth and inflation)
 - o We won't worry about the details

Aggregate demand 67

Aggregate demand

- Alternative theories of AD
 - IS/LM model comes out of Keynes's General Theory and describes a
 multiplier process in which more spending leads to more income, which leads
 to more spending.
 - Hicks exposition was first to formalize this version
 - IS/MP is David Romer's variant on IS/LM that provides for monetary policy to be set in terms of an interest-rate target rather than a target level of M
 - o Mundell-Fleming model is a variant of the IS/LM model that applies to an open-economy with high international mobility of borrowing and lending

IS/LM Model with Fixed Prices

- Traditional IS/LM vs. "neo-Keynesian" IS/LM
 - o Traditional is based on simple, intuitive relationships
 - o Modern models are grounded in assumptions about individual choice
 - o Romer 3rd edition presents basic, traditional model
 - Also in standard "intermediate" macro texts
 - o Romer 4th edition develops neo-Keynesian model with more rigor
 - We don't have time for the details of this derivation but will discuss the conclusions and the ideas

Traditional IS/LM derivation

- Income-expenditure model of closed economy
 - $\circ \quad Y = C + I + G$
 - \circ C = C(Y T)
 - \circ I = I(r)
- IS curve
 - Shift variables: *G*, *T*, anything that shifts the demand for consumption or investment (other than *Y* or *r*)
- Money demand: $M/P = L(Y,i), i = r + \pi$
- LM curve
 - O Shift variables: M/P, anything that shifts the demand for money other than Y or r, including π^e
 - o Zero lower bound on i
- Effect of ΔP and AD curve
 - Shift variables for AD curve: G, T, M, π^e , anything else that shifts IS or IM
 - Note ZLB case with vertical AD curve

68 Aggregate demand

Romer's MP curve

 Modern central banks act by setting the interest rate, not by setting targets for money supply

- Romer's MP is $r = r(Y, \pi)$ with positive effects from both
- *IS/MP* model looks a lot like *IS/LM*

Open-Economy Models

Basic concepts

- International trade: $Y = C + I + G + NX = E(Y, r, T, G, \varepsilon)$
 - o NX depends on $\varepsilon = eP^*/P$, where
 - *e* is price of foreign currency in terms of domestic
 - Increase in e = depreciation of domestic currency
 - ε is price of foreign goods in terms of domestic goods
 - NX is increasing in ε
 - $\circ Y = E^{D}(Y,r,G,T) + NX(Y,r,G,T,\varepsilon)$
 - $E^{D}(Y,r,G,T) \equiv C+I+G$
- Perfect capital mobility: $r = r^*$ if the real exchange rate is not expected to change
 - o Must include a term for expected depreciation of currency if non-zero:

$$r = r * + \frac{E(\dot{\varepsilon})}{\varepsilon}$$

- This term can lead to interesting effects, including "overshooting" of exchange rate.
- We won't have time to discuss this in detail and will assume it is zero.

Mundell-Fleming model

- Floating exchange rates and perfect capital mobility
- From MP^* curve $r^* = r(Y, \pi)$ sets a given level of Y (given π and r^*)
 - ο We plot the MP^* curve in (Y, ε) space, and it is vertical because ε does not appear in the equation
 - o Note that the central bank has *no control over r* in the case of perfect capital mobility.
 - o But a "stimulative monetary policy" will raise *Y* in this case:
 - Central bank tries to lower r by expanding M
 - This leads to capital outflow as r tries to fall below r^*
 - Capital outflow depreciates the currency, which makes exports cheaper and imports more expensive
 - NX increases, which raises the demand for Y and shifts the MP* curve to the right
- IS^* curve is $Y = C + I + G + NX = E(Y, r^*, G, T, \varepsilon)$ with positive effect of ε on Y

- o Positively sloped in (Y, ε) space.
- Shift variables: G, T, r*, and anything that shifts the demand curves for C,
 I, NX
- Can also do this model in regular IS/MP and (Y, r) space
- Note importance of zero expected change in exchange rate
 - O Modified capital mobility equation is $r = r^* + \frac{E(\dot{\epsilon})}{\epsilon}$
 - Speculative attack: Expected depreciation increases *r* and decreases demand for goods

Imperfect capital mobility

- CF = CF(r-r*), CF' > 0
- Capital inflows must match trade deficit: $CF(r-r^*) + NX(Y,r,G,T,\varepsilon) = 0$
 - O Can rewrite this as "IS" curve: $Y = E^{D}(Y, r, G, T) CF(r r^*)$
 - ο This curve is downward-sloping in r but flatter than standard IS because increase in r leads to capital inflow, which appreciates ε and reduces NX, so there is an additional decrease in expenditures.
 - Shift variables: G, T (not ε because we have "solved it out")
- MP curve is upward-sloping as before
 - o Central bank regains some control over r with imperfect capital mobility
 - o Control is limited because of very elastic IS curve

Fixed exchange rates

- Let $NX = NX(\varepsilon)$
- Suppose that central bank fixes $\varepsilon = \overline{\varepsilon}$
 - In order to fix exchange rate, central bank must buy or sell its currency (for foreign currency) to balance supply with demand at $\bar{\epsilon}$
- $CF(r-r^*)+NX(\overline{\epsilon})=RG=$ "reserve gain," the amount of foreign currency that the central bank buys (+ or –) to balance the market
 - o Constraint: $RG \ge 0$ or it would run out of reserves eventually
 - Central bank must set r high enough to keep its net reserve gain nonnegative
 - O Let r_0 be the lowest interest rate at which this occurs, then the central bank can set r by its MP curve as long as the r it would choose is $\geq r_0$
 - o MP curve has kink and becomes horizontal at r_0
- IS curve is the usual one including NX with ε fixed

Phillips Curve and Aggregate Supply

• Keynesian IS/LM model provided aggregate demand side.

- How did Keynesians explain price change over time?
 - o Romer's models are complicated and (to me) don't help much
- Phillips curve was empirical relationship between (wage) inflation and unemployment
 - o Original was for UK wage inflation
 - o Looks about the same with price inflation and for other countries
- Simple "theory"
 - When output booms $(Y > \overline{Y})$, then unemployment is low and wages will tend to rise
 - Wage increases will be passed along through prices, so inflation is high when unemployment is low
 - o Downward-sloping Phillips curve results
 - Problem with simple theory is that it fails to distinguish between real and nominal wages
 - Tight labor market should increase real wages
 - For real wages to rise, nominal wage must increase by more than prices

Modern Phillips curve (due to Friedman and Phelps)

- There is a long-run equilibrium *natural* rate of unemployment to which the labor market tends to return
 - Natural rate depends on structural characteristics of labor market, which vary greatly across countries and time
 - In an equilibrium labor market (no general shortfall or surplus of demand for labor), unemployment is a process of matching workers with jobs
 - o Because both are highly heterogeneous, this will be highly imperfect and there will be pools of vacant jobs and unemployed workers coexisting
 - o The size of this equilibrium pool of unemployed workers (as a percentage of the labor force) is the natural unemployment rate
 - o Natural rate will depend on degree of heterogeneity, mismatch, information flows, and legal framework (unemployment insurance, minimum wage, etc.)
 - o We will study natural rate of unemployment toward the end of the course
- We think of $u = u_n$ when $Y = \overline{Y}$, although in practice u tends to lag behind Y
- Given people's expectations of inflation, real wage will increase iff increase in nominal wage exceeds expected inflation
- Modern version of Phillips's adjustment hypothesis:

$$Y > \overline{Y} \Leftrightarrow u < u_n \Rightarrow \pi > \pi^e$$

 $Y = \overline{Y} \Leftrightarrow u = u_n \Rightarrow \pi = \pi^e$
 $Y < \overline{Y} \Leftrightarrow u > u_n \Rightarrow \pi < \pi^e$

- Modern Phillips curve predicts:
 - o Vertical long-run Phillips curve at natural rate
 - No long-run tradeoff between unemployment and inflation

- O Short-run Phillips curve slopes downward through (u_n, π^e)
- Consider effects of sustained aggregate demand growth (over-stimulative policy)
 - o In short run, economy moves up along Phillips curve to lower u and somewhat higher π
 - o Eventually, expectations catch up and π^e increases, which shifts PC upward
 - o In long run, economy is back at natural rate (on long-run PC) with much higher inflation
 - This is a simple story that fits the quantitative and qualitative data from the 1960s pretty well: repeated policy stimulation (Vietnam War, monetary expansion) led to high inflation

Phillips curve and aggregate supply

- Phillips curve is drawn in (u, π) space, but can do the same diagram in (Y, π) space or, given last period's price level, in (Y, P) space
- This is simple graphical representation of modern theory of aggregate supply:
 - o SRAS curve slopes upward through $\left(\overline{Y},P^{e}\right)$ or $\left(\overline{Y},\pi^{e}\right)$
 - o LRAS curve is vertical at \overline{Y}
- Expansion of AD leads to increase in Y and P in short run, but as expected price level catches up, Y goes back to \overline{Y} in long run and only P is affected
- Long-run equilibrium with inflation:
 - Steady growth in M causes AD to shift up year after year
 - o Growth in AD is expected, so P^{ϵ} goes up by same amount
 - o Rising *P* shifts SRAS upward along with AD, so equilibrium (ignoring growth) shifts up along LRAS with no increase in *Y* but steady inflation at rate of monetary expansion
 - O Note consistency with LM curve here: if *M* and *P* rise by same proportion ($\pi = \mu$) then *M/P* is constant and LM curve stays put
- We now turn to the microeconomic underpinnings of theories of aggregate demand and supply
 - All of the supply theories that we examine will have a result that more or less mirrors the simple theory above: SRAS slopes upward and LRAS is vertical