Problem 2.30 (Engel)

Show that the rotation operator does not change the length of an arbitrary vector.

rotation operator = \[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

arbitrary vector = \[
\left(\begin{array}{c}
a \\ b
\end{array} \right) = a \left(\begin{array}{c}1 \\ 0 \end{array} \right) + b \left(\begin{array}{c}0 \\ 1 \end{array} \right)
\]

Solution

The arbitrary vector has length \(\sqrt{a^2 + b^2} \). A useful way to see this is to notice that the vector is the sum of two perpendicular vectors of length \(a \) and \(b \), respectively (see diagram), so we can get the sum-vector's length by applying the Pythagorean theorem.

To show that the rotation matrix does not affect the length of \((a, b) \), I show that 1) rotation produces two new vectors of lengths \(a \) and \(b \), respectively, and 2) the new vectors are perpendicular.

The rotation operator produces the following results on each of the unit vectors:

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}1 \\ 0 \end{pmatrix} = \begin{pmatrix}(1) \cos \theta - (0) \sin \theta \\ (1) \sin \theta + (0) \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}
\]

\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}0 \\ 1 \end{pmatrix} = \begin{pmatrix}(0) \cos \theta - (1) \sin \theta \\ (0) \sin \theta + (1) \cos \theta \end{pmatrix} = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}
\]

The rotated unit vectors are still unit vectors:

length \(\left(\begin{array}{c}
\cos \theta \\ \sin \theta
\end{array} \right) = \sqrt{\cos^2 \theta + \sin^2 \theta} = \sqrt{1} = 1 \)

(the length of the other rotated unit vector is left as an exercise for you).

Thus, the effect of rotation on column vector \((a, b) \) is:
\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix}
= \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
[\begin{pmatrix}
a \\
0
\end{pmatrix}
+ \begin{pmatrix}
b \\
0
\end{pmatrix}]
\]

= \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
a \\
1
\end{pmatrix}
+ \begin{pmatrix}
b \\
0
\end{pmatrix}

= a \begin{pmatrix}
\cos \theta \\
\sin \theta
\end{pmatrix}
+ b \begin{pmatrix}
-\sin \theta \\
\cos \theta
\end{pmatrix}
\]

So the rotated vector is the sum of two vectors of length \(a\) and \(b\), respectively. The new vectors are perpendicular (orthogonal) because their dot product is zero:

\[
\text{dot product} \ (\cos \theta, \sin \theta).(-\sin \theta, \cos \theta) = -\cos \theta \sin \theta + \sin \theta \cos \theta = 0
\]

This completes the problem.