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ABSTRACT

Motivation: Significance analysis of differential expression in DNA

microarray data is an important task. Much of the current research is

focused on developing improved tests and software tools. The task is

difficult not only owing to the high dimensionality of the data (number

of genes), but also because of the often non-negligible presence of

missing values. There is thus a great need to reliably impute these

missing values prior to the statistical analyses. Many imputation meth-

ods have been developed for DNAmicroarray data, but their impact on

statistical analyses has not been well studied. In this work we examine

how missing values and their imputation affect significance analysis of

differential expression.

Results: We develop a new imputation method (LinCmb) that is

superior to the widely used methods in terms of normalized root

mean squared error. Its estimates are the convex combinations of

the estimates of existing methods. We find that LinCmb adapts to the

structure of the data: If the data are heterogeneous or if there are few

missing values, LinCmbputsmoreweight on local imputationmethods;

if the data are homogeneous or if there are many missing values,

LinCmb puts more weight on global imputation methods. Thus,

LinCmb is a useful tool to understand the merits of different imputation

methods. We also demonstrate that missing values affect significance

analysis. Two datasets, different amounts of missing values, different

imputation methods, the standard t-test and the regularized t-test and

ANOVA are employed in the simulations. We conclude that good

imputation alleviates the impact of missing values and should be an

integral part ofmicroarraydataanalysis.Themost competitivemethods

are LinCmb, GMC and BPCA. Popular imputation schemes such as

SVD, row mean, and KNN all exhibit high variance and poor perform-

ance. The regularized t-test is less affected by missing values than the

standard t-test.

Availability: Matlab code is available on request from the authors.

Contact: rebecka@stat.rutgers.edu; ouyangmi@umdnj.edu

1 INTRODUCTION

The DNA microarray technology is a method for probing the
expression of large numbers of genes simultaneously. Thousands
of DNA probes are arranged in a 2D array, typically on glass slides.
The total pool of mRNA from experimentally manipulated cells or
tissues are used to generate cDNAs, which are labeled using

fluorescent nucleotides. The labeled cDNAs are allowed to bind
(hybridize) to the DNA probes on the slide. The intensity of the
hybridized signal is related to the amount of mRNA that was
originally present in the cells or tissues.
There are several sources of missing values. First, the spots on the

slides are miniscule and they are packed very tightly. A tiny imper-
fection, a smudge or a speck of dust will corrupt the signals at a
number of spots. After the array images are scanned and digitized,
the problematic spots are manually flagged as missing. Second,
there is background noise in the scanned image, and it is customary
to subtract the background intensity from the spot intensity. For
various technical reasons, such as bleed-over from neighboring
spots and hybridization failures, the background intensity can be
higher than that of the spot, and background subtraction produces
negative expression levels. Those negative numbers are treated as
missing. Some investigators use quality filtering: a spot is flagged
and treated as missing if the spot intensity is less than, for example,
1.5-fold of the background.
Basically two types of microarray are in current use; they can be

categorized by how the DNA probes are immobilized on the slide:
the in situ synthesized Affymetrix GeneChips and the spotted cDNA
(or oligonucleotide) microarrays. In a GeneChip (Lipshutz et al.,
1999), 11–20 probe pairs are used to interrogate a gene. Although
the probe-pair multiplicity is not intended to prevent missing values,
it virtually precludes them in GeneChip data. Spotted cDNA
microarrays (Brown and Botstein, 1999) usually allocate one
spot per gene. Some do have double to quadruple spots for a
gene, but they are the exception rather than the norm. The loss
at a spot usually translates to the loss of information for a gene.
Thus, the present work is concerned with imputation of missing
values in spotted cDNA microarray data. Note that what we mean
by missing is different from the absent flag in GeneChip data. The
present and absent flags generated by proprietary Affymetrix soft-
ware indicate whether the targets are detectable, whereas bymissing
we mean the data are corrupted, and it is infeasible to determine
whether or at what quantities the targets are present.
Microarray data can be represented as a matrix A. The rows

correspond to the genes, the columns correspond to the experiments
and the entry Ai,j is the expression level of gene i in experiment j.
Most spotted microarray experiments use the two-dye protocol: The
control is labeled with Cy3 (green), the treatment is labeled with
Cy5 (red) and the data in the matrix are the log-ratios of treatment
versus control. A simple imputation is to fill the missing values with!To whom correspondence should be addressed.
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zeros, effectively declaring that the treatment does not alter gene
expression. Another simple method uses the row means (ROW) for
imputation. There are numerous non-trivial imputation methods:
Troyanskaya et al. (2001) studied K nearest neighbor imputation
(KNN) and singular value decomposition based imputation (SVD);
Oba et al. (2003) described a method based on Bayesian principal
components analysis (BPCA); Zhou et al. (2003) used Bayesian
variable selection and both linear and non-linear regression for
imputation; Bø et al. (2004) described a method based on the
least squares principle; Kim et al. (2005) studied local least squares
imputation. For time-series data, Bar-Joseph et al. (2003) described
a model-based spline fitting method and Schliep et al. (2003) used
hidden Markov models for imputation. All these papers focused on
how close the imputed values were to the true values, in terms of
normalized root mean squared error (RMSE).
We take the view that the goal of imputation is to improve the

results of subsequent data analysis, such as cluster analysis (Eisen
et al., 1998) and significance analysis of differential expression (Cui
and Churchill, 2003). Therefore, the focus of our work is the impact
of missing values and their imputation on data analysis. Previously,
we (Ouyang et al., 2004) described an imputation method based on
Gaussian mixture clustering (GMC) and model averaging that has
smaller RMSE than KNN and SVD, and improves the subsequent
cluster analysis by reducing the number of misclustered genes.
In the present study, we describe a new method (LinCmb) whose

estimates are the convex combinations of the estimates by ROW,
KNN, SVD, BPCA and GMC. The rationale is that each method
takes a specific approach to data imputation, and is therefore asso-
ciated with a particular type of systematic error. By combining the
different estimates, some of the errors may cancel out, and we can
borrow strength across methods to adapt to the data structure.
Using cDNA microarray data from a study on human liver and

liver cancer (Chen et al., 2002) and a drug study (Pan et al., 2004)
for simulations, we demonstrate that LinCmb has smaller RMSE
than all the constituent methods. Furthermore, we use the full data
with no missing values to construct ‘gold standards’ of differentially
expressed genes by the standard t-test, the regularized t-test (Baldi
and Long, 2001) or ANOVA. We then compare the false positive
rate (FPR) of the analyses in the presence of missing values. We find
that the standard t-test is less robust and is affected by missing
values to a larger extent than the regularized t-test. If the amount
of missing values is small (1%), imputation does not significantly
improve the results and may in fact increase FPR. However, if there
are many missing values (4% or 7%), good imputation reduces FPR.
LinCmb helps shed light on the differences of performance among
the various imputation methods. LinCmb, GMC and BPCA are all
competitive in terms of FPR performance, and among them GMC is
the simplest and easiest to compute. Widely used methods, such as
ROW, SVD and KNN, perform poorly in comparison. Our conclu-
sion is that imputation should be an integral part of microarray data
analysis.

2 DATA AND METHODS

2.1 Microarray data

The human liver and liver cancer microarray data (Chen et al., 2002) were
downloaded from Stanford Microarray Database (Gollub et al., 2003). Each
of the 207 arrays probes 23 000 transcripts. The smallest percent of missing

values in an array is 3.49%, the largest 54.1% and the median 26.5%. Out of

the 23 000 transcripts, only 285 have no missing values. Many of the missing
values correspond to genes that are not expressed in liver or liver cancer. The

proportion of missing values that arise from blemishes on the chips is <5%
for most of the arrays.We selected 20 arrays of liver samples and 20 arrays of

liver cancer samples with the fewest missing values for further analysis. The
resulting complete data consist of 6511 probes on 40 arrays. The drug data

(Pan et al., 2004) probe gene expression in spinal cord in response to injury

and treatment by several anti-inflammatory drugs. Each array probes 4967
transcripts. There are seven experimental conditions (two baselines and five

drugs). Three replicates are available for each experimental condition. We

extracted a subset of the data with no missing values consisting of 1664

probes on 21 arrays (7 ! 3).

To emulate the random nature of blemishes on the chips, we adapt the
model of missing at random: in the simulations, 1, 4 and 7% of the data

values are randomly and independently marked as missing, their values are

imputed and the imputed values are compared with the true values. The
1–7% range is based on realistic expectation of quality control. If a chip has

>10% missing entries owing to blemishes, the remaining data may not be

reliable for meaningful analysis.

2.2 Imputation methods

Microarray data are represented as a matrix. The rows correspond to the

genes, and the columns correspond to the samples. ROW uses the row means
as the estimates of the missing values. KNN and SVD were described by

Troyanskaya et al. (2001), and C++ code of KNN is available; we implement

both methods in Matlab. BPCA was described by Oba et al. (2003), and
Matlab code is available. GMC (Ouyang et al., 2004) takes the approach of
model averaging. The microarray data are clustered into 1, 2, . . . , T-com-

ponent Gaussian mixtures (T is usually <10) by the classification

expectation–maximization algorithm (Banfield and Raftery, 1993); then
the missing values are estimated by the expectation–maximization algorithm

(Dempster et al., 1977); for each missing value, the estimate by GMC is the

simple average of the T estimates.

The new method LinCmb takes a regression approach called model stack-

ing (Hastie et al., 2001). LetM be the true values of the missing data, let R,K,
S and B be the estimates ofM by ROW, KNN, SVD and BPCA, respectively,

and let G1, . . . ,G5 be the estimates of M by Gaussian mixtures of 1, . . . , 5
components. Least-squares regression is used to determine the constants
r, k, s, b and g1, . . . , g5 in

M
0 ¼ rRþ kK þ sSþ bBþ

X5

i¼1

giGi‚ ð1Þ

subject to the constraints

r‚k‚s‚b‚g1‚ . . . ‚g5 > 0‚ ð2Þ

and

r þ k þ sþ bþ
X5

i¼1

gi ¼ 1: ð3Þ

The values of r, k, s, b, g1, . . ., g5 are estimated as follows. LinCmb is given a

matrix with missing values. Let p be the proportion of missing data. LinCmb
first uses KNN to estimate the missing values and obtains a completed matrix

A. Then LinCmb performs a loop of 30 iterations. In each iteration, LinCmb

uses the missing probability p/(1 % p) to generate ‘fake’ missing entries in A
whose true values, ~MM , are known to LinCmb. If a fake-missing entry coin-
cides with a real missing value, it is not treated as fake missing. The expected

fake-missing rate among the originally non-missing entries is ( p/
(1 % p)) · (1 % p) ¼ p. The constituent methods are used to estimate the
fake-missing entries. Since LinCmb knows ~MM , it can then perform the least-

squares regression to obtain a vector (r, k, s, b, g1, . . ., g5). Let

(!rr‚!kk‚!ss‚!bb‚ !g1g1 ‚ . . . ‚ !g5g5 ) be the mean of these 30 vectors from the loop.
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The LinCmb imputation is defined as

!rrRþ !kkK þ !ssSþ !bbBþ
X5

i¼1

!ggiGi: ð4Þ

The parameters of KNN and SVD can be set via procedures similar to the
one above. However, for KNN we simply set K, the number of nearest

neighbors, at 16 for all datasets and all missing probabilities. The optimal

values of K do vary somewhat depending on data and missing probabilities,

and they are in the range from 10 to 20. The difference in imputation
accuracy between the optimal values and 16 is very small. For SVD we

set the number of singular vectors at the optimal value (in this case at 2).

LetM0 be an estimate ofM. The accuracy ofM0 is measured by normalized

RMSE:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanf M%M 0ð Þ2g

meanfM2g

s

‚ ð5Þ

whereM2, for example, is componentwise. Oba et al. (2003) used a different

definition: RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean f M%M

0" #2g=variance fMg
q

, but when

microarray data as here are normalized (Quackenbush, 2002) before imputa-

tion, the expected value of mean{M} is zero. Thus these two RMSEs should

be very close.

2.3 Statistical tests

To cope with the large variations in microarray data, the regularized t-test
(Baldi and Long, 2001) calculates the weighted average of the gene-specific

variance and the mean variance of the gene’s ‘neighborhood’. The mean

neighborhood variance appears in the prior of a Bayesian formulation. We

use a neighborhood of 101 genes consisting of 50 each with mean expression
levels immediately above and below the gene under consideration, and the

gene itself. Let s2 be the gene-specific variance, let s2
0 be the mean neigh-

borhood variance, let n be the number of replicates and let n0 be a positive
integer. Then the Bayesian adjusted variance of the gene is

s2 ¼ n0s2
0 þ n%1ð Þs2

n0 þ n%2
: ð6Þ

The adjusted variance s2 is used in a gene-specific t-test with n0 + n % 2
degrees of freedom. Baldi and Long (2001) suggested that n0 + n be 10 when
n is very small, but there was no guideline with respect to missing values. We

use the following way to accommodate them.When the number of replicates

n0 of a gene is less than n owing to missing values, a n
0

0 such that n
0

0 þ n
0
is

equal to n0 + n is used to calculate s2. Another issue is that the value 10 for

n0 + n is meant for experiments with very few replicates of samples from

controlled genetic compositions, whereas the liver and liver cancer data are

from 20 independent samples. Thus, we use 25 for n0 + n here, so that there
is a (5:20) Bayesian modulation in s2.

The regularized t-test provides a nominal P-value of differential expres-
sion. We then use the Benjamini and Hochberg (1995) adjustment to control

the false discovery rate in multiple testing. We designate 0.001 as the thresh-
olds on the adjusted P-values for significance of differential expression in the
liver and liver cancer data, resulting in 1452 significant genes. These genes

are treated as the ‘gold standard’. For the purpose of comparison, we also use

the standard t-test to calculate nominal P-values and then apply the BH
adjustment. The number of significant genes in the gold standard of the

standard t-test is 1416. For the drug data, we apply ANOVA and the BH

adjustment. The number of significant genes in the gold standard is 378 at the

adjusted P-value of 0.05.

2.4 The simulation scheme

The liver and liver cancer data are two 6511 · 20 matrices. The 6511 · 40

entries are randomly and independently marked as missing with probabilities

0.01, 0.04 and 0.07.

First, the data with missing values are subjected to the regularized t-test
where n

0

0 þ n0 is set at 25 regardless of how many missing values a gene may
have. The genes are sorted by their BH adjusted P-values, and the sorted list
is compared with the gold standard.We compare two sets of gene lists: one at

false negative rate (FNR) 0%, and the other at FNR 5%. We calculate the
false positive rate (FPR) of the regularized t-test in the presence of missing

values at these two FNR levels:

FPR ¼ false positive

true positiveþ false positive
: ð7Þ

FPRs of the standard t-test are also calculated, where missing values result in

reduced degrees of freedom.

Second, the missing values in the data are imputed by ROW, KNN, SVD,
BPCA, GMC1, . . . , GMC5 and LinCmb. The RMSE of each method is cal-

culated. The data with imputed values are subjected to both the regularized

t-test where n0 + n is 25, and the standard t-test where the degrees of free-
dom are 19. We then calculate FPRs for each of the imputation methods.

The simulation is repeated 200 times for each missing probability. A

similar simulation is performed on the drug data with ANOVA.

3 RESULTS

3.1 Parameters for GMC and LinCmb

Gaussian mixtures require the number of components to be fixed;
we used mixtures of 1, . . ., 5 components for the liver and liver
cancer data. With more mixtures the components often contain
too few data points to reliably determine their probability density
functions. For the drug data, we were only able to use up to three
components (two for missing probability 0.07).
LinCmb is the convex combination of the constituent methods.

Figure 1 depicts the means of these weights from 200 randomized
runs on liver, liver cancer and drug data. As the number of missing
values increases, the weights of local methods (e.g. KNN and
GMC5) decrease, and those of global methods (e.g. BPCA and
GMC1) increase. For the heterogeneous datasets (liver cancer

Fig. 1. Mean method weights assigned by LinCmb for missing probabilities

0.01 (open circle, solid line), 0.04 (triangle, dashed line) and 0.07 (cross,

dotted line).
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and drug), larger weights are assigned to local methods when local
information is available (1% missing). To reduce clutter in the
figure only mean results are shown. The results are highly repro-
ducible across randomized runs.

3.2 Root mean squared error

Imputation accuracy is measured by normalized root mean squared
error [RMSE; Equation (5)]. Figure 2 depicts boxplots of RMSE
(200 randomized runs) for liver, liver cancer and drug data. To
facilitate the comparison, we show the pairwise difference of
RMSE(LinCmb) and the RMSE of the constituent methods, i.e.
RMSE(method)%RMSE(LinCmb). The median of RMSE(LinCmb)
is added to all entries to make the multiple figures directly com-
parable. We find that LinCmb has lower RMSE than all of the
constituent methods. We test the significance of the RMSE
improvement and obtain P-values <10%12 for all pairwise compar-
isons, all datasets and all missing probabilities.
There are notable connections between Figures 1 and 2. First,

ROW and SVD have the worst RMSE, and thus the smallest weights
in the convex combination. Second, among the GMCis, GMC1 has
the best RMSE and the largest weight. Third, BPCA and GMC1

have about the same RMSE, but GMC1 is assigned larger weights.

The phenomenon is most pronounced for the liver cancer data
with missing probability 0.07; BPCA has the best RMSE, and
yet its contribution to LinCmb is very limited. BPCA and GMC1

predictions are highly correlated; however, upon close examination
of the simulation data, we find that BPCA predictions are more
variable. Thus, in the least-squares regression, larger weights are
assigned to GMC1.
To explain how the LinCmb weights are distributed we classify

imputation methods as local and global. KNN is clearly local; GMCi

with i > 1 are local; the more Gaussian components that are fit to the
data, the more local the method is. The global methods are SVD, its
robust counterpart BPCA and GMC1. ROW is local if the row mean
is taken across columns of the same experimental condition (as for
the liver data), and can loosely be thought of as global if imputation
is done across all columns (as for the drug data, with few replicate
samples). As the missing probability increases, the weights shift
from local to global methods (Fig. 1). When there are few missing
values, local methods have high weights, because there is sufficient
local information for imputation. When there are many missing
values, global methods dominate, because the availability of
reliable local information is limited. In other words, LinCmb
adapts to the amounts of missing values in the data, and this

Fig. 2. Imputation RMSE differences for missing probabilities 0.01 (left column), 0.04 (middle column) and 0.07 (right column) for the liver (first row), liver
cancer (middle row) and drug (third row) data. The boxplots show pairwise differences [RMSE(method)%RMSE(LinCmb)] (multiplied by 100) across 200

randomized runs. The median RMSE(LinCmb) is added to all entries and is shown with a horizontal line. Figures in each row are drawn to the same scale.
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explains its excellent RMSE. Note that local methods show good
RMSE performance when few missing values are present, but
their performance quickly deteriorates as missingness increases
(Fig. 2).

3.3 False positive rates

Missing values are replaced by imputed values, and imputed data
are analyzed by the two t-tests or ANOVA, as if there are no missing
values at all. We also process the data without imputation (referred
to as ‘None’ in the figures and tables). This involves reduced
degrees of freedom for the standard t-test and ANOVA, and an
increase of n

0

0 to maintain n
0

0 þ n
0 ¼ 25 for the regularized t-test.

Some examples of FPR/FNR values for the liver data are shown in
Table 1. Genes are selected at adjusted P-value of 0.001, and com-
pared with the gold standard. None gives the lowest FPR and highest
FNR; an expected result that reflects the loss of power associated
with a reduced data size owing to missingness. ROW has the next
highest FPR and lowest FNR. ROW reduces the variance within
experimental conditions, and if borderline (non)significant genes
contain missing values, ROW will almost guarantee their signific-
ance. However, compared with other methods, ROW’s loss in FPR
is 1–2%, whereas its gain in FNR is an order of smaller magnitude.
KNN has both high FPR and FNR, suggesting that it is not

competitive despite its popularity (similar results were obtained
for SVD). BPCA and LinCmb appear to control both FPR and FNR.
Since the number of significant genes, FPR and FNR all vary

across methods, direct comparison of methods is difficult. We
therefore compare methods at two fixed FNR levels: 0% and 5%
(Section 2.4).
Figures 3, 4 and 5 show the FPR when data are imputed by

various methods. We depict differences in FPR between LinCmb
and its constituent methods (similar to Fig. 2): FPR(method)%
FPR(LinCmb); the median of FPR(LinCmb) is added to all entries
to make the figures directly comparable. Figure 3 shows the FPR
differences for regularized t-test and standard t-test for the liver data
set at FNR ¼ 0%; Figure 4 shows the results at FNR ¼ 5%. A
comparison between the two figures shows that the regularized t-
test has a smaller FPR at FNR ¼ 5% than the standard t-test,
whereas the FPRs are comparable at FNR ¼ 0%. At FNR ¼ 0%,
ROW is the most competitive method in terms of FPR, with
LinCmb as a close competitor. Excluding ROW, LinCmb is
significantly better than all other methods when 1–4% data are
missing, and significantly better or comparable to ROW at 7%
missing. ROW performance deteriorates drastically at FNR ¼ 5%.
5%. In fact, the relative FPR results at FNR ¼ 5% mimic the
RMSE results (Fig. 2). If the amount of missing values is small
(1%), imputation does not greatly improve the results compared
with no imputation (Fig. 4, first row). However, when there are

Fig. 3. FPR (multiplied by 100), at FNR ¼ 0%, for the liver data. The box-
plots show FPR(method)%FPR(LinCmb) across 200 randomized runs; the

median of FPR(LinCmb) is added to each entry andmarked with a horizontal

line.

Fig. 4. FPR (multiplied by100), at FNR ¼ 5%, for the liver data. SeeFigure 3

for explanations.
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many missing values (4 and 7%), good imputation reduces FPR.
When 1% are missing, None dominates all other imputation
schemes if the standard t-test is used. With the regularized t-test
None, SVD, KNN and ROW are all significantly worse than the rest
(pairwise comparisons). At 4% missing, for both tests, None, SVD,
KNN and ROW are all significantly worse than the other methods.
At 7% missing LinCmb and GMC are significantly better than
the rest.
Combining the results in Table 1, and Figures 3 and 4, we

conclude that, for the liver data, LinCmb is consistently competitive
at both FNR levels, especially when there are many missing values.
BPCA and GMC1 are competitive at FNR ¼ 5%, though BPCA
performance deteriorates at 4–7% missing (significantly worse
than LinCmb). BPCA and GMC1 performances at FNR ¼ 0%
are significantly worse than LinCmb.
Figure 5 shows the results on the drug data, which have few

replicates per condition. Thus ROW imputes across multiple con-
ditions and is more of a global method. ROW, KNN and SVD
performance is consistently poor. With only 1% missing, None
has one of the lowest FPR. With 4 and 7% missing, we see that
at FNR ¼ 0% (left column of Fig. 5) BPCA and GMC1 are the most
competitive, closely followed by LinCmb. At FNR ¼ 5% and 1%
missing, the FPR are all low (within four genes of each other). At
4% LinCmb is significantly better than the rest, and at 7% LinCmb,
BPCA and GMC1 are all comparable.

4 DISCUSSION

The liver and liver cancer microarray data provide an interesting
contrast in imputation difficulty. Using the best methods available to
us, imputation RMSE of liver data is <0.27, whereas that of liver
cancer data is >0.46. This difference is probably because of the
molecular homogeneity in the liver samples and the lack thereof in
the cancer samples. The drug data are noisy with few replicates, and
thus they are very difficult to impute.
When RMSE is considered (Fig. 2), LinCmb is the best method,

followed by BPCA (Oba et al., 2003) and GMCi (Ouyang et al.,
2004). Popular methods such as KNN, SVD (Troyanskaya et al.,
2001), and ROW all perform poorly in comparison. LinCmb is a
convex combination of the other methods and uses both local and
global information. The more missing data are present, the more
weights are put on the global models, and vice versa. Prior to using
the convex combination, we studied the simple method average, and
the results were inferior to those presented here (data not shown). If
we relax the convex constraint, the results are slightly better (data
not shown); however, the weights of the unconstrained linear com-
bination are difficult to interpret as some of them are negative. We
also used median models instead of mean models from the interior
iterations of LinCmb with insignificant changes to the results.
BPCA can be construed as a regularized version of SVD. The

regularization improved the performance of the method drastically.
This relationship is similar to the one between the regularized t-test
and the standard t-test. In both cases, the Bayesian components help
to cope with the large variations inherent in microarray data. In
general, the regularized t-test (Baldi and Long, 2001) has smaller
FPR than the standard t-test (Fig. 4).
LinCmb, GMC1 and BPCA are all competitive in terms of FPR,

with LinCmb having a slight edge when there are many missing
values. If the standard t-test is used, and if few values are missing,
not imputing may in fact lower the FPR. Future work will center on
extending LinCmb to locally adapt to the rate of missingness. The
decision on whether or not, or how to impute a missing value on a
gene-by-gene basis will depend on the amount of missing values for
that gene, and the amount of missing values in the neighborhood of
that gene. We stress that the performance of widely-used methods,
such as ROW, KNN and SVD, is very poor. Superior performance

Fig. 5. FPR (multiplied by 100), at FNR ¼ 0% (left column) and FNR ¼ 5%

(right column) of significance analysis for the drug dataset.

Table 1. Comparison of significant gene lists to the gold standard

0.01 0.04 0.07

Standard t-test
None 2.01/2.34 3.20/9.57 3.97/17.15
ROW 3.91/0.55 9.40/1.37 14.03/1.64

KNN 3.50/0.56 8.36/1.59 12.37/2.15

BPCA 3.44/0.51 8.02/1.44 11.80/1.91

LinCmb 3.44/0.48 8.01/1.42 11.70/1.91
Regularized t-test
None 1.57/1.68 4.77/4.98 6.96/7.58

ROW 2.57/0.81 8.45/1.64 13.24/1.85
KNN 2.15/0.79 7.27/1.79 11.45/2.23

BPCA 2.08/0.76 6.92/1.66 10.82/2.01

LinCmb 2.09/0.75 6.86/1.66 10.73/2.02

Genes selected at FDR 0.001. FPR/FNR mean values (200 runs) for the liver data.
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in terms of RMSE does not guarantee a superior performance in
terms of FPR. Thus the effect on significance analysis needs to be
taken into account when comparing and developing imputation
methods. Our results suggest that the effect of imputation on sig-
nificance analysis is of ‘second order’, compared with the first order
effect on RMSE. Still, the effect of imputation on significance
analysis is notable, and using a robust and well-chosen imputation
strategy is highly advisable.
The focus of this work was on understanding the impact of

missing values on significance analysis, delineating the relative
merits of local and global imputation approaches for different
data, and comparing various imputation methods directly. In its
present implementation, LinCmb is not computationally competit-
ive with simple schemes such as GMC. When imputing the liver
and liver cancer data with 7% missing values (Matlab scripts,
Linux, Pentium 2.8 GHz, 1G RAM), the running time is,
ROW 1 s, KNN 36 s, SVD 10 s, BPCA 13 min, and 16 and 60 s
for GMC1 andGMC5, respectively. For the same task, LinCmb takes
8.5 h because it calls all the constituent methods 30 times in a loop to
estimate its parameters (there was no significant improvement if we
increased the number of iterations to 100). However, computational
complexity is not as critical a factor as accuracy for imputation
(Sehgal et al., 2005); it can argued that 8.5 h is negligible when
compared with the time and effort that scientists put into microarray
experiments and subsequent analysis. To use LinCmb in practice,
we recommend removing BPCA from model stacking. Without
BPCA, the running time of LinCmb is comparable to that of
BPCA, and since the weight assigned to BPCA in model stacking
is small, the performance is not significantly affected (data not
shown).
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