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Exercise 8: An Introduction to Descriptive and  
Nonparametric Statistics 

Elizabeth M. Jakob and Marta J. Hersek 
Goals of this lab 
1. To understand why statistics are used 
2. To become familiar with descriptive statistics 
1. To become familiar with nonparametric statistical tests, how to conduct them, and how to 

choose among them 
2. To apply this knowledge to sample research questions 

Background 
If we are very fortunate, our experiments yield perfect data: all the animals in one treatment 

group behave one way, and all the animals in another treatment group behave another way. Usually 
our results are not so clear. In addition, even if we do get results that seem definitive, there is always a 
possibility that they are a result of chance.  

Statistics enable us to objectively evaluate our results. Descriptive statistics are useful for 
exploring, summarizing, and presenting data. Inferential statistics are used for interpreting data and 
drawing conclusions about our hypotheses. 

Descriptive statistics include the mean (average of all of the observations; see Table 8.1), mode 
(most frequent data class), and median (middle value in an ordered set of data). The variance, standard 
deviation, and standard error are measures of deviation from the mean (see Table 8.1). These statistics 
can be used to explore your data before going on to inferential statistics, when appropriate. 

In hypothesis testing, a variety of statistical tests can be used to determine if the data best fit our 
null hypothesis (a statement of no difference) or an alternative hypothesis. More specifically, we 
attempt to reject one of these hypotheses. We calculate the test statistic appropriate for our research 
methods and the design of our study, and calculate the probability that the pattern we see in our data is 
due to chance alone. This probability is called the P value. By convention, most behavioral ecologists 
agree that when P is equal to or less than 0.05, we can confidently reject the null hypothesis. 

To determine which type of statistical test to use on a given set of data, we must first determine 
whether or not the data fit a normal (bell-shaped) distribution. If so, we can use parametric statistical 
tests (see Figure 8.1). If the data are not normal, we must use nonparametric tests. Since many of the 
data collected in animal behavior studies are not normally distributed, we will focus on nonparametric 
tests in this lab.  

A flow chart to help you decide which tests to use is given in Figure 8.1. Following this is a 
series of worked examples for a number of nonparametric tests. Begin by acquainting yourself with the 
flow chart; then skip ahead to the Methods section that follows the worked examples. 
Here are some helpful terms: 

Continuous data: numerical data, such as number of seconds, distance, or frequency of a 
behavior. 

Categorical data: data that can be put into categories, such as number of animals that moved 
toward a stimulus, moved away from a stimulus, or stayed in place. 

Ordinal data: categorical data where there is a logical ordering to the categories. A good example 
is the Likert scale that you see on many surveys: 1=Strongly disagree; 2=Disagree; 3=Neutral; 
4=Agree; 5=Strongly agree. 

Unpaired data: data points that are independent from each other, such as data generated by 
testing two separate groups of animals. 

Paired data: data points that are naturally paired in some way, most commonly because the same 
animal was tested more than once. These data points should not be treated as independent from 
one another. 

Number of groups: the number of different test groups being compared. 
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Type of 
data? 

Chi-square goodness of fit 
Chi-square test of independence 
Binomial test 

Categorical  
e.g., left/right, large/small, color 
 Continuous or 

Ordinal 
e.g., 1, 3.29, 6.28 … 
or 1st 2nd 3rd … 

Number of 
groups? 

Are data 
paired? 

Sign test (nonparametric) 
Wilcoxon matched-pairs   

    signed-rank test (nonparametric) 
Paired t-test (parametric) 

Mann-Whitney U test (nonparametric) 
T-test (parametric) 

>2 

2 

No 

Figure 8.1.  A flow chart to aid in deciding which statistical test is appropriate. Only 
common tests are included. 

Yes 

Kruskal-Wallis test 
(nonparametric) 

ANOVA (parametric) 
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BEFORE CLASS: After examining the flow chart, look through the following tests.  
1. Mann-Whitney U test 

This test is used to determine the significance of differences between two sets of unpaired 
data. A ranking system is used. 
 
Example: You are interested in whether the movement rate of the protozoan Paramecium 
caudatum is influenced by whether they are tested under dim or bright light. The null hypothesis 
is P. caudatum has the same rate of movement under both conditions. You measure movement 
rate by counting the number of squares in a counting chamber a Paramecium crosses every 10 
seconds. 
 
1. First, order each group from smallest to largest. Next, rank the data of the two groups 
combined. The lowest score (of both groups) gets a value of 1, the next highest (of both 
groups) a value of 2, etc. In the case of ties (for example, two values of 12), each value is 
ranked, the ranks are averaged, and the average rank is assigned to each of the tied 
scores: (11+12)/2 = 11.5. If you’ve done this properly, your last rank will equal N, the 
total number of samples. 
Example: P. caudatum movement data (squares crossed per 10 sec.) 

Dim Light Rank  Bright Light Rank 
10 7 5 1 
11 9.5 6 2 
12 11.5 7 3 
12 11.5 8 4 
15 13 9 5 
16 14 10 7 
17 15 10 7 
  11 9.5 

2. Designate the sample size of the larger group as NL and that of the smaller as NS. In our 
example NL = 8 and NS = 7. 
 
3. Sum the ranks (T) of each group. 
  TS = 7 + 9.5 + 11.5 + 11.5 + 13 + 14 + 15 = 81.5 
  TL = 1 + 2 + 3 + 4 + 5 + 7 + 7 + 9.5 = 38.5 
 
4. Calculate the test statistics, US and UL. 

 US = NSNL +
NS NS +1( )

2
− TS = 2.5  

 UL = NSNL −US = 53.5  
 
5. Choose the greater of the two values of U. This is the test statistic. Compare it to the 
critical value in Table 8.2. The test statistic must be higher than the critical value to be 
significant.  In this example, the higher U is 53.5. Look in Table 8.2 under NL = 8 and NS 
= 7 at the 95% level (P = 0.05). The critical value for P = 0.05 is 43; since 53.5 > 43, we 
can reject the null hypothesis with 95% probability that rejection is correct. We conclude 
that Paramecium swim more slowly under bright light.  



4 

2. Kruskal-Wallis test 
The Kruskal Wallis Test is similar to the Mann-Whitney U test, but here we have more 

than two groups. Work through the Mann-Whitney U example before attempting this one. 
 
Example: You are interested in the antipredator behavior of garter snakes. You wonder how close 
you, as a simulated predator, can get before the snake crawls away. Because snakes are 
poikilotherms and can move more quickly when it is warmer, you suspect that this behavior is 
influenced by temperature. You compare three groups: snakes at 23°C, 25°C, and 27°C. The data 
are closest approach distance, in meters. The null hypothesis is that snakes tested under these 
three temperatures do not differ in how close an experimenter approaches before they flee. 
 
1. First order and rank the data, as described for the Mann-Whitney U test. When there 
are tied scores, each score is given the mean of the ranks for which it is tied. Compute the 
sum of the ranks for each group, symbolized by R. R1 is the sum of the ranks of group 1, 
etc. 
Example: Flight distance of snakes (in meters) 

23°C Rank 25°C Rank 27°C Rank 
0.5 1 0.75 2 3.5 7 
1 3 3.25 6 5.5 12 

1.25 4 4 8 6 13 
3 5 4.75 10 8 14 

4.25 9 5.25 11   
 R1 = 22  R2 = 37  R3 = 46 

 
2. Now compute the test statistic, H, using the following formula: 

 H =
12

N(N + 1)
Ri2

ni
∑ − 3(N +1)  

In this formula, the ∑  is a summation sign, and indicates that you should sum up each R2 
value, from R1 to R3. Plugging in the appropriate numbers for R, N (the total number of 
observations), and ni (the number of observations in each group): 
 

 H =
12

14(14 +1)
(22)
5

2

+
(37)2

5
+
(46)2

4
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
− 3(14 +1) = 6.4  

 
If you have a large number of ties, use the correction for ties. Compute H as above, then 
divide by 

 1 −
t3 − t( )∑

N3 − N
 

 where t = the number of observations in a tied group of scores 
 N = the total number of all observations 
 
3. Compare your test statistic with Table 8.3. The test statistic must be higher than the 
critical value to be significant. H, at 6.4, is greater than 5.6429, so you may reject the null 
hypothesis at P < .05. The three groups do differ. 
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3. Sign test 
The sign test is used for two-groups when the data are paired. In this test, only the signs of the 
differences are used. Another nonparametric test, the Wilcoxon matched-pairs signed rank test, is 
more powerful because it uses both the signs and the magnitude of the differences. We will use 
the sign test as a general example of how paired data can be treated. 
 
Example: You imagine that male mice might benefit from avoiding inbreeding, or mating with 
close relatives. Because mice depend on odor for a great deal of their information about the 
world, you decide to present males with soiled litter from the cages of females. You test each 
male twice: once with litter from his sister, and once with litter from a stranger. The females are 
sexually receptive, so the soiled litter should be rich in chemical cues. You present the litter in 
random order so that half the males get their sibling’s litter first, and half get the stranger’s litter 
first. Since the same males are tested twice, a Mann-Whitney U test is inappropriate. Null 
hypothesis: The number of sniffs per minute will be the same when males are exposed to the litter 
of their sisters vs. that of strangers. 
 
Male ID 
Number 

Number of Sniffs/Min 
with Sister’s Litter 

Number of Sniffs/Min 
with Stranger’s Litter 

Sign of the 
Difference 

1 10 9 + 
2 8 3 + 
3 3 5 - 
4 20 11 + 
5 15 9 + 
6 35 21 + 
7 4 6 - 
8 11 10 + 
9 41 20 + 
10 22 21 + 
11 16 16 0 
12 18 17 + 
13 7 0 + 
14 11 5 + 

 
1. Subtract one data column from the other to determine the sign of the difference. (It 

doesn’t matter which you subtract from which, just be consistent.) 
 
2. Note the least frequent sign. In this case, the least frequent sign is negative, and there 

are two. The test statistic, x, therefore equals 2. 
 
3. Determine N, the number of pairs which showed a difference.  Here we disregard male 

#11, so N = 13. 
 
4. Look at Table 8.4 for N = 13 along the left-hand side. Now find x = 2. The P value is 

0.011 (the initial decimal places are omitted in the table to save space). You can 
therefore reject your null hypothesis at the 0.05 level. 
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4. Chi-square test of independence and chi-square goodness-of-fit test 
Tests using the chi-square statistic are useful when you have nominal data (categories 

rather than numbers). For example, a category might be “large” vs. “small,” “laid eggs” vs. “did 
not lay eggs,” etc. 

First we will look at the chi-square test of independence. This test helps us determine 
whether two variables are associated. If two variables are not associated (that is, they are 
independent), knowing the value of one variable will not help us determine the value of the other 
variable.  
 
Example: When snails sense the presence of a nearby starfish, a predator, via chemicals in the 
water, they will climb. We can look at three groups of snails: the first group is the control group, 
with the snails exposed to plain sea water, the second group is exposed to water scented by a sea 
urchin (an herbivore), and the third group to sea water scented by a predatory starfish. The data 
collected for each snail is whether it climbed or not. These are categorical data: the snail could do 
one thing or the other. The categories are mutually exclusive (the snail could not “climb” and 
“not climb”). If the variables are independent, there will be no relationship between the type of 
water the snail is exposed to (the first variable) and how it responds (the second variable). Note: if 
instead of making categories of “climb” and “not climb,” the experimenter had measured the 
distance each snail moved, the chi-square test would be inappropriate. (Which test should be used 
for those data?) 
1. Make a table of observed frequencies, the data actually collected in the experiment. 
 
Observed frequencies 
 Source of Test Water  
Behavior Control Sea urchin Predator Row totals 
Climb 12 14 24 50 
Not climb 28 23 15 66 
Column totals 40 37 39 Grand total = 116 
 
Note: The grand total of the rows should equal the grand total of the columns. 
 
2. Calculate and tabulate the expected frequency for each category (for the number of 
snails observed, the frequency expected in each category if there is no relationship 
between the variables): 
 

column total x row total
grand total

 

 
Expected frequencies 
 Source of Test Water  
Behavior Control Sea urchin Predator Row totals 
Climb 17.2 16 16.8 50 
Not climb 22.8 21 22.2 66 
Column totals 40 37 39 Grand total = 116 
 
3. Calculate the value of chi-square (x2): 
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 χ 2 =
O − E( )
E∑

2

 

 where: 
O = the observed frequency in each cell 

 E = the expected frequency in each cell 

χ 2 =
(12 −17.2)2

17.2
+
(28 − 22.8)2

22.8
+
(14 −16)2

16
+
(23 − 21)2

21
+
(24 −16.8)2

16.8
+
(15 − 22.2)2

22.2
 

x2 = 8.62 
 
4. Examine the table of critical values for this test (see Table 8.5). The df column 
corresponds to the degrees of freedom for this test. Degrees of freedom is a number that 
results from the way the data are organized, and refers to whether the observations are 
free to vary. For example, if all of 50 observations must fall into two categories, as soon 
as we know that one category holds 41 data points, then the other category holds nine. 
For every statistical test, there are established methods for determining degrees of 
freedom. For the chi-square test, the formula is: 
 
 df = (# rows – 1) (# columns - 1) = (2–1) (3–1) = 2 
 

We compare the test statistic to the critical value: if it is bigger, we reject the null 
hypothesis. The calculated x2 is 8.62, which is greater than 5.99. The three groups of 
snails moved differently. 

 
A second type of chi-square test is called the chi-square goodness-of-fit test. In this 

case, the experimenter tests to see how the data match expected values that were 
determined before the test was run. For example, in Mendelian genetics, we can predict 
the outcome of different crosses; the ratio of the different types of offspring is known in 
advance. In this case, we compare the observed values from the experiment with the 
expected values, generated by theory. The calculations are performed in exactly the same 
way as for the chi-square test of independence. 

 
5. The binomial test 

This test is useful for categorical data where we have only two categories, and when 
we are interested in testing whether the data are equally likely to fall into either category.  
 
Example: You’ve been using a coin to randomly assign treatments to your experimental 
animals, but you are beginning to suspect that the coin is not fair, and you decide you’d 
better test this. The null hypothesis is: the coin is equally likely to come up tails as heads.  
 
1. Flip the coin 11 times. Nine times it comes up heads, and twice it comes up tails.  
 
2. Using Table 8.4, locate the value for N (in this case, 11) along the left side, and the 
smallest numerical score (x; in this case, 2) along the top. The probability associated with 
this distribution is 0.033 (i.e., P = 0.033).  Because P < 0 .05, we can reject our null 
hypothesis: the coin is not fair. 
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IN CLASS 
After you have reviewed the flow chart and glanced through the worked examples, 

attempt the following problems. In each, an experiment is described. Determine which 
statistical test is most appropriate, and answer all questions posed. Refer back to the 
worked examples to help you understand how to conduct each test. 
 
1. Elephants make low-frequency sounds, inaudible to humans. Apparently these sounds 
are used in long-distance communication between individuals. You are interested in the 
response of bull and female elephants to the sound of a female who is ready to mate. You 
mount a giant speaker on top of your van and drive around the plains looking for 
elephants. When you find one, you stop 15 m away, play the sound and watch the 
elephant’s response. You discover: 
 
 9 bull elephants approach the van 
 2 bull elephants do not approach the van 
 3 female elephants approach the van 
 11 female elephants do not approach the van 
 
Your experiment ends prematurely when one of the bull elephants, apparently enraged by 
the absence of a female, tips the van over and damages the speaker. You hope that you 
have enough data to make a claim about males and females.  
 
a. What is the null hypothesis? 
b. What statistical test should you use? 
c. Calculate your test statistic. Is your result statistically significant? 
d. What conclusion can you draw from this experiment? 
 
 
2. Male butterflies sometimes court females of other species with similar wing patterns. 
You are interested in how long males persist in courting the wrong female. You decide to 
test each male with a dead female, to control for the effect of the female’s behavior. You 
use three types of test females: one from the same species as the males, one from a 
different species with a similar wing pattern, and one from a different species with a 
different wing pattern. Each pair is placed in a cage, and you measure courtship time in 
seconds. 
 Female of same species: 23, 20, 17, 25, 28 
 Female of different species, similar pattern: 18, 27, 24, 21 
 Female of different species, different pattern: 22, 21, 23, 20 
 
a. Calculate the mean, variance, and standard deviation for each group. 
b. Qualitatively compare the means and standard deviations for each group. (Do they 
look very different? Very similar?) 
c. Which statistical test would you use to look for differences? 
d. Perform the test. What is your test statistic? Can you reject your null hypothesis? 
e. Give a biological reason why your test may have come out the way it did. 
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3. Honeybees returning from foraging convey information to bees in the hive about the 
location of food resources. One way they do this is through a waggle dance that other 
bees watch. Another way they convey information is by regurgitating some of the food 
they have collected to other bees, a process known as trophyllaxis. You are interested in 
the speed at which bees find a resource another bee “tells” them about. You decide to 
compare bees that have only observed a dance with bees that have observed a dance and 
accepted regurgitated food. You mark a lot of bees with bee tags (little numbered discs 
that you glue to the back of the thorax). This enables you to watch the same individual 
repeatedly. One day you choose a lot of bees that have seen a waggle dance but not 
accepted food. You measure (in seconds) how long it takes for them to find the resource. 
A week later you go back to the hive, and find the same individuals. This time you watch 
until they see a dance and accept food, and again measure how long it takes them to reach 
the resource. 
 
Here are your data. The numbers are seconds needed for the bee to reach the resource. 
 

Bee # Watch Only Watch and Accept Food 
1 87 80 
2 53 48 
3 57 57 
4 89 88 
5 48 38 
6 109 160 
7 109 100 
8 48 78 
9 29 26 
10 45 41 
11 67 53 
12 120 98 
13 55 55 
14 89 78 

 
 
a. What sort of data are these? Which test should you choose? 
b. What is the test statistic?  The table statistic? 
c. You decide that a bee that has both watched and gotten food from another bee finds the 
resource faster than one that has just watched. What other factor that is a result of your 
experimental protocol might also explain your results? 
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Table 8.1  Formulas for descriptive statistics 
 
Yi is an observation, or data point. The first observation is Y1, the second is Y2, etc.  
 
N is the sample size, or the number of observations. 
 
Mean: 
 

Variance: 

 
 

Standard deviation: 
 
 

 
Standard error: 
 

 
 
 
Median: Rank the values from lowest to highest and take the center-most value. 
 
 
 
 
Mode: The most common value. 

Y =
Yi∑
N

s 2 =
Yi − Y( )∑
N −1

2

s = s2

s
N
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Table 8.2  Critical values of U, the Mann-Whitney statistic for P = 0.05 and 0.01. 
(Modified from Table 29, F.J. Rohlf and R.R. Sokal. 1981. Statistical Tables, 2nd edition. W.H. Freeman 
and Company.) 
 

NL NS P = 0.05 P = 0.01 
3 2   
 3 9  

4 2   
 3 12  
 4 15  

5 2 10  
 3 14  
 4 18 20 
 5 21 24 

6 2 12  
 3 16  
 4 21 23 
 5 25 28 
 6 29 33 

7 2 14  
 3 19 21 
 4 24 27 
 5 29 32 
 6 34 38 
 7 38 43 

8 2 15  
 3 21 24 
 4 27 30 
 5 32 36 
 6 38 42 
 7 43 49 
 8 49 55 

9 2 17  
 3 23 26 
 4 30 33 
 5 36 40 
 6 42 47 
 7 48 54 
 8 54 61 
 9 60 67 

10 2 19  
 3 26 29 
 4 33 37 
 5 39 44 
 6 46 52 
 7 53 59 
 8 60 67 
 9 66 74 
 10 73 81 
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NL NS 0.05 0.01 
11 2 21  

 3 28 32 
 4 36 40 
 5 43 48 
 6 50 57 
 7 58 65 
 8 65 73 
 9 72 81 
 10 79 88 
 11 87 96 

12 2 22  
 3 31 34 
 4 39 42 
 5 47 52 
 6 55 61 
 7 63 70 
 8 70 79 
 9 78 87 
 10 86 96 
 11 94 104 
 12 102 113 

13 2 24 26 
 3 33 37 
 4 42 47 
 5 50 56 
 6 59 66 
 7 67 75 
 8 76 84 
 9 84 94 
 10 93 103 
 11 101 112 
 12 109 121 
 13 118 130 

14 2 25 28 
 3 35 40 
 4 45 50 
 5 54 60 
 6 63 71 
 7 72 81 
 8 81 90 
 9 90 100 
 10 99 110 
 11 108 120 
 12 117 130 
 13 126 139 
 14 135 149 
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Table 8.3  Probabilities associated with values as large as observed values of H in 
Kruskal-Wallis tests. 
(Modified from Table O in S. Siegel. 1956. Nonparametric Statistics for the Behavioral Sciences. 
McGraw-Hill, New York.) 
 

Sample Sizes   
N1 N2 N3 H P 
2 1 1 2.7000 .500 
     

2 2 1 3.6000 .200 
     

2 2 2 4.5714 .067 
   3.7143 .200 
     

3 1 1 3.2000 .300 
     

3 2 1 4.2857 .100 
   3.8571 .133 
     

3 2 2 5.3572 .029 
   4.7143 .048 
   4.5000 .067 
   4.4643 .105 
     

3 3 1 5.1429 .043 
   4.5714 .100 
   4.0000 .129 
     

3 3 2 6.2500 .011 
   5.3611 .032 
   5.1389 .061 
   4.5556 .100 
   4.2500 .121 
     

3 3 3 7.2000 .004 
   6.4889 .011 
   5.6889 .029 
   5.6000 .050 
   5.0667 .086 
   4.6222 .100 
     

4 1 1 3.5714 .200 
     

4 2 1 4.8214 .057 
   4.5000 .076 
   4.0179 .114 
     

4 2 2 6.0000 .014 
   5.3333 .033 
   5.1250 .052 
   4.4583 .100 
   4.1667 .105 
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 Sample Sizes    

N1 N2 N3 H P 
4 3 1 5.8333 .021 
   5.2083 .050 
   5.0000 .057 
   4.0556 .093 
   3.8889 .129 
     

4 3 2 6.4444 .008 
   6.3000 .011 
   5.4444 .046 
   5.4000 .051 
   4.5111 .098 
   4.4444 .102 
     

4 3 3 6.7455 .010 
   6.7091 .013 
   5.7909 .046 
   5.7273 .050 
   4.7091 .092 
   4.7000 .101 
     

4 4 1 6.6667 .010 
   6.1667 .022 
   4.9667 .048 
   4.8667 .054 
   4.0667 .102 
     

4 4 2 7.0364 .006 
   6.8727 .011 
   5.4545 .046 
   5.2364 .052 
   4.5545 .098 
   4.4455 .103 
     

4 4 3 7.1439 .010 
   7.1364 .011 
   5.5985 .049 
   5.5758 .051 
   4.5455 .099 
   4.4773 .102 
     

4 4 4 7.6539 .008 
   7.5385 .011 
   5.6923 .049 
   5.6538 .054 
   4.6539 .097 
   4.5001 .104 
     

5 1 1 3.8571 .143 
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 Sample Sizes    

N1 N2 N3 H P 
5 2 1 5.2500 .036 
   5.0000 .048 
   4.4500 .071 
   4.2000 .095 
   4.0500 .119 
     

5 2 2 6.5333 .008 
   6.1333 .013 
   5.1600 .034 
   5.0400 .056 
   4.3733 .090 
   4.2933 .122 
     

5 3 1 6.4000 .012 
   4.9600 .048 
   4.8711 .052 
   4.0178 .095 
   3.8400 .123 
     

5 3 2 6.9091 .009 
   6.8218 .010 
   5.2509 .049 
   5.1055 .052 
   4.6509 .091 
   4.4945 .101 
     

5 3 3 7.0788 .009 
   6.9818 .011 
   5.6485 .049 
   5.5152 .051 
   4.5333 .097 
   4.4121 .109 
     

5 4 1 6.9545 .008 
   6.8400 .011 
   4.9855 .044 
   4.8600 .056 
   3.9873 .098 
   3.9600 .102 
     

5 4 2 7.2045 .009 
   7.1182 .010 
   5.2727 .049 
   5.2682 .050 
   4.5409 .098 
   4.5182 .101 
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 Sample Sizes    

N1 N2 N3 H P 
5 4 3 7.4449 .010 
   7.3949 .011 
   5.6564 .049 
   5.6308 .050 
   4.5487 .099 
   4.5231 .103 
     

5 4 4 7.7604 .009 
   7.7440 .011 
   5.6571 .049 
   5.6176 .050 
   4.6187 .100 
   4.5527 .102 
     

5 5 1 7.3091 .009 
   6.8364 .011 
   5.1273 .046 
   4.9091 .053 
   4.1091 .086 
   4.0364 .105 
     

5 5 2 7.3385 .010 
   7.2692 .010 
   5.3385 .047 
   5.2462 .051 
   4.6231 .097 
   4.5077 .100 
     

5 5 3 7.5780 .010 
   7.5429 .010 
   5.7055 .046 
   5.6264 .051 
   4.5451 .100 
   4.5363 .102 
     

5 5 4 7.8229 .010 
   7.7914 .010 
   5.6657 .049 
   5.6429 .050 
   4.5229 .099 
   4.5200 .101 
     

5 5 5 8.0000 .009 
   7.9800 .101 
   5.7800 .049 
   5.6600 .051 
   4.5600 .100 
   4.5000 .102 
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Table 8.4  Table of probabilities associated with values as small as observed values of x, 
for use in sign test and binomial test. Values for total sample size are in the left-hand 
column, and values for x are across the top. Decimal places are omitted in order to save 
space. 
(Table D in S. Siegel. 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, New 
York.) 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
5 031 188 500 812 969 *           
6 016 109 344 656 891 984 *          
7 008 062 227 500 773 938 992 *         
8 004 035 145 363 637 855 965 996 *        
9 002 020 090 254 500 746 910 980 998 *       

10 001 011 055 172 377 623 828 945 989 999 *      
11  006 033 113 274 500 726 887 967 994 * *     
12  003 019 073 194 387 613 806 927 981 997 * *    
13  002 011 046 133 291 500 709 867 954 989 998 * *   
14  001 006 029 090 212 395 605 788 910 971 994 999 * *  
15   004 018 059 151 304 500 696 849 941 982 996 * * * 
16   002 011 038 105 227 402 598 773 895 962 989 998 * * 
17   001 006 025 072 166 315 500 685 834 928 975 994 999 * 
18   001 004 015 048 119 240 407 593 760 881 952 985 996 999 
19    002 010 032 084 180 324 500 676 820 916 968 990 998 
20    001 006 021 058 132 252 412 588 748 868 942 979 994 
21    001 004 013 039 095 192 332 500 668 808 905 961 987 
22     002 008 026 067 143 262 416 584 738 857 933 974 
23     001 005 017 047 105 202 339 500 661 789 895 953 
24     001 003 011 032 076 154 271 419 581 729 846 924 
25      002 007 022 054 115 212 345 500 655 788 885 
*1 or approximately 1.
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Table 8.5  Table of probabilities for the chi-square distribution. 
(Modified from Table 14, Rohlf, F.J. and R.R. Sokal. 1981. Statistical Tables, 2nd edition. W. H. Freeman 
and Company.) 
 

Degrees of freedom P = 0.05 P = 0.01 
1 3.841 6.635 
2 5.991 9.210 
3 7.815 11.345 
4 9.488 13.277 
5 11.070 15.086 
6 12.592 16.812 
7 14.067 18.475 
8 15.507 20.090 
9 16.919 21.666 
10 18.307 23.209 

 


